Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,5x^2-3x\left(x-2\right)\)
\(=5x^2-3x^2+6x\)
\(=2x^2+6x\)
\(b,3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c, Đề ko rõ Yang Yang
\(d,7x\left(x-5\right)+3\left(x-2\right)\)
\(=7x^2-35x+3x-6\)
\(=7x^2-32x-6\)
\(e,5-4x\left(x-2\right)+4x^2\)
\(=5-4x^2+8x+4x^2\)
\(=5+8x\)
\(f,4x\left(2x-3\right)-5x\left(x-2\right)\)
\(=8x^2-12x-5x^2+10x\)
\(=3x^2-2x\)
1) A = 3 - 4x2 - 4x = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4
Vì - (2x+1)2 \(\le\)0 nên A = - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2
b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4
=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3
2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)= \(\frac{1}{4}\)
vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2
b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0
ta có: |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2
vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x < 5/3
a) x2 - 2x + 5
= x2 - x - x + 1 + 4
= (x2 - x) - (x - 1) + 4
= x.(x-1) - (x-1) + 4
= (x-1)^2 + 4
Có: (x-1)^2 \(\ge\)0 => (x-1)^2 + 4\(\ge4\)
Dấu ''='' xảy ra khi x-1=0 => x = 1.
Vậy Min của x^2 - 2x + 5 bằng 4 khi x = 1
Câu a phần I sai. đề là :
a) A = -3x(x - 5 ) + 3(x2 - 4x ) - 3x + 10
Giải
1) 3xy2 : 5x = \(\frac{3}{5}\)y2
2) 15x4yz3 : 4xyz = \(\frac{15}{4}\)x3z2
3) (4x2y2 - 12xy3 - 7x) : 3x = \(\frac{4}{3}\)xy2 - 4y3 - \(\frac{7}{3}\)
4) (14x4y2 - 12xy3 - x) : 4x = \(\frac{7}{2}\)x3y2 - 3y3 - \(\frac{1}{4}\)
5) (6x2 + 13x - 5) : (2x + 5) = (3x - 1)(2x + 5) : (2x + 5) = 3x - 1
6) (2x4 + x3 - 5x2 - 3x - 3) : (x2 - 3)
= 2x4 + x2 - 6x2 + x3 - 3 - 3x : x2 - 3
= x2(2x2 + x + 1) - 3(2x2 + x + 1) : x2 - 3
= (2x2 + x + 1)(x2 - 3) : x2 - 3
= 2x2 + x + 1
1.
= 4x\(^{^{ }2}\)-4x-9x+9
=4x(x-1)-9(x-1)
=(4x-9)(x-1)
rút gọn biểu thức
a) \(4x^2-\left(x+3\right).\left(x-5\right)+x\)
\(=4x^2-\left(x^2-5x+3x-15\right)+x\)
\(=4x^2-x^2+5x-3x+15+x\)
\(=3x^2+3x+15.\)
b) \(x.\left(x-5\right)-3x.\left(x+1\right)\)
\(=x^2-5x-\left(3x^2+3x\right)\)
\(=x^2-5x-3x^2-3x\)
\(=-2x^2-8x.\)
d) \(\left(x+3\right).\left(x-1\right)-\left(x-7\right).\left(x-6\right)\)
\(=x^2-x+3x-3-\left(x^2-6x-7x+42\right)\)
\(=x^2-x+3x-3-x^2+6x+7x-42\)
\(=15x-45.\)
Chúc bạn học tốt!