Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2-7x+4=3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{1}{12}=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Vậy GTNN của A là \(-\frac{1}{12}\)khi x = \(\frac{7}{6}\)
\(A=-\left(x^2-3x-4\right)\)
\(=-\left(x^2-2.x\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\right)\)
\(=-\left(\left(x-\frac{3}{2}\right)+\frac{7}{4}\right)\)
\(=-\frac{7}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{-7}{4}\)
Vậy \(MAXA=\frac{-7}{4}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
\(B=2\left(x^2-\frac{3}{2}x+1\right)=2\left(x^2-2\times x\times\frac{3}{4}+\frac{9}{16}-\frac{9}{16}+1\right)=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)
MIN B = 7/8 <=> x=3/4
Gọi \(A=x^2+y^2+xy-3x-3y-3\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-6\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-6\)
\(=\left(x-1\right)^2+2\left(x-1\right)\frac{1}{2}\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2+\frac{3}{4}\left(y-1\right)^2-6\)
\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)Có GTNN là -6
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow x=y=1}\)
Vậy GTNN của A là -6 tại x = y = 1
A= x2+y2+xy-3x-3y-3
\(=\left[x-1+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1+\frac{1}{2}\left(y-1\right)=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy.............
\(A=\left(2x+5y\right)^2+\left|3x-9\right|+200\)
\(\left(2x+5y\right)^2\ge0;\left|3x-9\right|\ge0\)
\(\Rightarrow\left(2x+5y\right)^2+\left|3x-9\right|\ge0\)
\(\Rightarrow\left(2x+5y\right)^2+\left|3x-9\right|+200\ge200\)
\(\Rightarrow A\ge200\)
dấu "=" xảy ra khi :
\(\hept{\begin{cases}\left(2x+5y\right)^2=0\\\left|3x-9\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x+5y=0\\3x-9=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=-5y\\x=3\end{cases}}}\)
=> 2.3 = -5.y
=> -5y = 6
=> y = -6/5
vậy Min A = 200 khi x = 3 và y = -6/5
Ta có: (2x + 5y)2 \(\ge\)0 \(\forall\)x; y
|3x - 9| \(\ge\)0 \(\forall\)x
=> (2x + 5y) + |3x - 9| + 200 \(\ge\)200 \(\forall\)x;y
Hay A \(\ge\)200 \(\forall\)x; y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+5y=0\\3x-9=0\end{cases}}\) <=> \(\hept{\begin{cases}5y=-2x\\3x=9\end{cases}}\) <=> \(\hept{\begin{cases}y=-\frac{2}{5}x\\x=3\end{cases}}\) <=> \(\hept{\begin{cases}y=-\frac{6}{5}\\x=3\end{cases}}\)
Vậy Amin = 200 tại x = 3 và y = -6/5
M=x^2+y^2
Vì x^2 > hoặc bằng 0 Dấu bằng xảy ra khi x=0
y^2>hoặc bằng 0 Dấu bằng xảy ra khi y=0 Vậy min của M=0 khi x=0;y=0
1) A = 3 - 4x2 - 4x = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4
Vì - (2x+1)2 \(\le\)0 nên A = - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2
b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4
=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3
2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)= \(\frac{1}{4}\)
vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2
b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0
ta có: |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2
vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x < 5/3
\(A=3x^2-3x+6=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{21}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{21}{4}\ge\dfrac{21}{4}\)
\(A_{min}=\dfrac{21}{4}\) khi \(x=\dfrac{1}{2}\)
3x2-3x+6
=3x2-2.xΓ3.1/(2Γ3)+1/12-1/12+6
=[3x2-2.xΓ3.1/(2Γ3)+1/12]-71/12
=[xΓ3-1/(2Γ3)]2-71/12
Ta có [xΓ3-1/(2Γ3)]2≥0 ∀x
Suy ra MinA=-71/12