K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

\(A=x^2-6x-4=x^2-6x+9-13=\left(x-3\right)^2-13\ge-13\)

Vậy \(A_{min}=-13\Leftrightarrow x=3\)

29 tháng 7 2019

\(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

a, A = x2 + 6x + 13

=(x2+6x+9)+4

=(x+3)2+4\(\ge\)4

Dấu "=" xảy ra khi x=-3

5 tháng 7 2019

      \(A=x^2+6x+13\)

<=>\(A=x^2+6x+9+4\)

<=>\(A=\left(x+3\right)^2+4\ge4\)

Dấu "=" xảy ra <=> x+3=0 <=> x=-3

Vậy minA=4 <=> x=-3

      \(B=4x^2+3x+11\)

<=>\(B=4\left(x^2+\frac{3}{4}x-\frac{11}{4}\right)\)

<=>\(B=4\left(x^2+\frac{3}{4}x+\frac{3}{8}\right)-\frac{185}{16}\)

<=>\(B=4\left(x+\frac{3}{8}\right)^2-\frac{185}{16}\ge-\frac{185}{16}\)

Dấu "=" xảy ra <=> x+3/8=0 <=> x=-3/8

Vậy minB=-185/16 <=> x=-3/8

     \(C=5x^2-x+34\)

<=>\(C=5\left(x^2-\frac{1}{5}x+\frac{34}{5}\right)\)

<=>\(C=5\left(x^2-\frac{1}{5}x+\frac{1}{100}\right)+\frac{679}{20}\)

<=>\(C=\left(x-\frac{1}{10}\right)^2+\frac{679}{20}\ge\frac{679}{20}\)

Dấu "=" xảy ra <=> x-1/10=0 <=> x=1/10

Vậy minC= 679/20 <=> x=1/10

5 tháng 10 2020

giúp mình mọi người ơiii

5 tháng 10 2020

Bài 1.

A = 2x2 - x + 4 = 2( x2 - 1/2x + 1/16 ) + 31/8 = 2( x - 1/4 )2 + 31/8 ≥ 31/8 ∀ x

Dấu "=" xảy ra khi x = 1/4

=> MinA = 31/8 <=> x = 1/4

Bài 2.

A = -x2 + 3x + 2 = -( x2 - 3x + 9/4 ) + 17/4 = -( x - 3/2 )2 + 17/4 ≤ 17/4 ∀ x

Dấu "=" xảy ra khi x = 3/2

=> MaxA = 17/4 <=> x = 3/2

B = 3x2 + x - 5 = 3( x2 + 1/3x + 1/36 ) - 61/12 = 3( x + 1/6 )2 - 61/12 ≥ -61/12 ∀ x

Dấu "=" xảy ra khi x = -1/6

=> MinB = -61/12 <=> x = -1/6

C = x2 + 3/2x - 5 = ( x2 + 3/2x + 9/16 ) - 89/16 = ( x + 3/4 )2 - 89/16 ≥ -89/16 ∀ x

Dấu "=" xảy ra khi x = -3/4

=> MinC = -89/16 <=> x= -3/4

20 tháng 6 2019

Bai 1 tim min con bai 2 tim max

27 tháng 7 2016

a/ x2 + 3x + 1

\(=x^2+2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

       Vậy MinA = -5/4 khi x + 3/2 = 0 => x = -3/2

b/ 9x2 + 3x + 1

\(=\left(3x\right)^2+2.3x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(3x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

         Vậy MinB = 3/4 khi 3x + 1/2 = 0 => 3x = -1/2 => x = -1/6

c/ -x2 + 2x - 1 = -(x2 - 2x + 1) = -(x - 1)2 \(\le0\)

          Vậy MaxC = 0 khi x - 1 = 0 => x = 1

27 tháng 7 2016

a.\(=x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{5}{4}=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

dấu = xảy ra khi x=-3/2

b,c tt