Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+m-3=0\)
có 2 nghiệm x1;x2 thoả mãn theo vi-et ta có
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=5\left(1\right)\\x_1x_2=\frac{c}{a}=m-3\left(2\right)\end{matrix}\right.\)
theo đề bài ta có
\(x^2_1-2x_1x_2+3x_2=1\)(3)
thế (1) vào (3) ta được
\(x^2_1-2x_1\left(5-x_1\right)+3\left(5-x_1\right)=1\)
\(x^2_1-10x_1+2x^2_1+15-3x_1=1\)
\(3x^2_1-13x_1+14=0\)
=>\(\left[{}\begin{matrix}x_1=\frac{7}{3};x_2=\frac{8}{3}\\x_1=2;x_2=3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=\frac{83}{9}\\m=9\end{matrix}\right.\)
vậy .....
Để ptrinh có hai nghiệm x1 ; x2 => \(\Delta=25-4.\left(3m-1\right)=29-12m\ge0\)
=> \(m\le\frac{29}{12}\)
Theo viet \(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=3m-1\end{cases}}\)
=> \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(-5\right)^2-4.\left(3m-1\right)=29-12m\)
=> \(x_1-x_2=\sqrt{29-12m}\)
Có : \(x_1^3-x_2^3+3x_1x_2=\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)+3x_1x_2\)
\(=\left(x_1-x_2\right)\left(x_1^2-2x_1x_2+x_2^2+3x_1x_2\right)+3x_1x_2\)
\(=\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+3x_1x_2\)
\(=\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+3x_1x_2\)
\(\Rightarrow\sqrt{29-12m}\left[\left(-5\right)^2-3m+1\right]+3.\left(3m-1\right)=75\)
\(\Rightarrow\sqrt{29-12m}\left(26-3m\right)+9m-3=75\)
\(\Rightarrow\sqrt{\left(29-12m\right)\left(26-3m\right)^2}=78-9m\)
\(\Rightarrow\left(29-12m\right)\left(26-3m\right)^2=6084-1404m+81m^2\)
\(\Rightarrow108m^3-2052m^2+11232m-13520=0\)
=> \(\orbr{\begin{cases}m=\frac{5}{3}\left(tm\right)\\m=\frac{26}{3}\left(ktm\right)\end{cases}}\)
sry bạn làm ngắn hơn cũng đc chứ mik làm dài
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
bạn mình mớiOoO_Nhok_Lạnh_Lùng_OoO sao chép được cái trái tim của bạn