\(x^2+\left(m-1\right)x+5m-6=0\)

Tìm điều kiện của m để phương tr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Related imagebạn mình mớiOoO_Nhok_Lạnh_Lùng_OoO sao chép được cái trái tim của bạn

26 tháng 6 2017

cùi bắp thôi đơn giản màRelated image

9 tháng 8 2017

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán 

29 tháng 5 2020

\(x^2-2\left(m-1\right)x+m^2-3=0\)

có: \(\Delta'=\left(m-1\right)^2-\left(m^2-3\right)=-2m+4\)

Phương trình có hai nghiệm <=> \(-2m+4\ge0\Leftrightarrow m\le2\)(@@)

Vì \(x_1\)là nghiệm của phương trình nên ta có: \(x_1^2-2\left(m-1\right)x_1+m^2-3=0\)(1)

mà \(\left(x_1\right)^2+4x_1+2x_2-2mx_1=1\)(2) 

Lấy (1) - (2) ta có: \(-2x_1-2x_2+m^2-3=-1\)

<=> \(-2\left(x_1+x_2\right)+m^2-2=0\)

<=> -  \(4\left(m-1\right)+m^2-2=0\)

<=> \(\orbr{\begin{cases}m=2+2\sqrt{2}\left(kotm\right)\\m=2-2\sqrt{2}\left(tm@@\right)\end{cases}}\)

Vậy \(m=2-\sqrt{2}\)

29 tháng 5 2020

\(\Delta'=\left(m-1\right)^2-m^2+3=-2m+4\ge0\Leftrightarrow m\le2\)

Định lý Vi-et \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3\end{cases}}\)

Vì x1 là nghiệm của phương trình nên \(x_1^2-2\left(m-1\right)x_1+m^2-3=0\Leftrightarrow x_1^2-2mx_1=-2x_1-m^2+3\left(1\right)\)

Theo đề \(x_1^2+4x_1+2x_2-2mx_1=1\Leftrightarrow x_1^2-2mx_1+4x_1+2x_2=1\left(2\right)\)

Thay (1) vào (2) ta có \(-2x_2-m^2+3+4x_1+2x_2=1\Leftrightarrow2\left(x_1+x_2\right)-m^2+2=0\Leftrightarrow4\left(m-1\right)-m^2+2=0\)

\(\Leftrightarrow m^2-4m+2=0\)

\(\Leftrightarrow m=2\pm\sqrt{2}\)

So với điều kiện đề bài ta có \(m=2-\sqrt{2}\)

Nhiều thế, chắc phải đưa ra đáp thôi

4 tháng 4 2022

Phương trình 2 nghiệm phân biệt khi 

\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)

\(\Leftrightarrow m\ne-1\)

Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)

Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)

<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)

\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)

Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán 

NV
5 tháng 4 2022

\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)

\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)

\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)

\(\Leftrightarrow m\ge-\dfrac{8}{3}\)

Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)

5 tháng 8 2016

a. Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow2^2-\left(m+1\right)\ge0\Leftrightarrow m\le3\)

b. Theo Viet \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=m+1\end{cases}}\)

Lại có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)

Theo đề bài: 14 - 2m = 10 => m = 2. (TM)

5 tháng 8 2016

a) PT có nghiệm thì \(\Delta=4^2-4\left(m+1\right)\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow4m\le12\Leftrightarrow m\le4\)

b) theo hệ thức viet ta có \(\hept{\begin{cases}x_1+x_2=-4\\x_1.x_2=m+1\end{cases}}\)

Có   \(x_1^2+x^2_2=10\Leftrightarrow x_1^2+x^2_2+2x_1.x_2=10+2x_1.x_2\Leftrightarrow\left(x_1+x_2\right)^2=10+m+1\)

\(\left(-4\right)^2=11+m\Leftrightarrow16=11+m\Leftrightarrow m=5\)