Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)
Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)
Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)
\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)
Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100) mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)
b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)
Giải
22003 = 2003 lần chữ số 2 nhân lại.
Vì 2 × 2 × 2 × 2 = 16 (tận cùng là 6)
Mà 6 × 6 × 6 × ... = X (tận cùng là sáu vì 6 × 6 = 36)
Bốn số 2 nhân lại mới được 6 vậy có tổng cộng 2003 số 2 chia 4, tức là thế này:
(2 × 2 × 2 × 2) × (...) × ... = X (có 2003 chữ số 2)
Có tổng cộng 2003 ÷ 4 = 500 (cặp) và dư lại 3 số 2.
Vậy chữ số tận cùng là 6 × ba số hai
=> 6 × 2 × 2 × 2 = 48 (tận cùng là 8)
Vậy bạn Hùng sai !
Ghi chú: thật ra em mới học lớp 5 và biết một tí về toán lớp 6 nên bài này em làm được!
Bạn Hùng giải sai vì :
(29)17 . 2 = 2153 . 2 = 2154 \(\ne\)2155
hãy đổi các lũy thừa và xét từng số một trong biểu thức để xem nó có phải là hợp số hay không và kết luận
\(a!\)là tích các số tự nhiên từ 1 đến a.
a, \(11!=1.2.3.....11\)
Vì trong 11! chứa thừa số 2 và 5 nên 11! có chữ số tận cùng là 0.
\(17!=1.2.3.....17\)
17! cũng có chữ số tận cùng là 0.
b, Bạn cần nhớ: 10 nhân với số nào cũng có chữ số tận cùng là 0.
5 nhân với số lẻ nào cũng có chũ số tận cùng là 5
Tích \(2.4.6.....98\) vì chứa thừa số 10 nên tích này chữ số tận cùng là 0.
Tích \(1.3.5.....99\) vì chừa thừa số 5 mà ko chứa thừa số 2 nên tích này chữ số tận cùng là 5.
Vậy tổng \(\left(2.4.6.....98\right)+\left(1.3.5.....99\right)\) có chữ số tận cùng là: \(0+5=5\)
Chúc bạn học tốt.
Vì m, n là số nguyên tố nên m, n > 0
7m+n=31 suy ra \(7m\le31\)và \(7m⋮7\)\(\Rightarrow7m\in\left\{14;21;28\right\}\)
\(\Rightarrow m\in\left\{2;3;4\right\}\)\(\Rightarrow n\in\left\{17;10;3\right\}\)
Ta loại trường hợp n=10 và m=4 đi vì 10 và 4 là hợp số khi đó chỉ còn cặp số \(\left(m;n\right)=\left(2;17\right)\)
Khi đó \(m^n+n^m=2^{17}+17^2=131072+289=131361\)
Michelle Nguyen trên wolfram giải đúng đó
hai chữ số tận cùng là 13