K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

\(M=x^2-2x+2014\)

\(M=x^2-2\cdot x\cdot1+1^2+2013\)

\(M=\left(x-1\right)^2+2013\ge2013\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Mmin = 2013 khi và chỉ khi x = 1

9 tháng 4 2016

M=x^2-2x+2014/x^2

   =1-2/x+2014/x^2

Đặt y=1/x

Ta có M=2014y^2-2y+1

             =2014(y^2-2y.1/2014+1/2014^2)-1/2014+1

             =2014(y-1/2014)^2+2013/2014 lớn hơn hoặc bằng 2013/2014 với moi x

Vậy min M=2013/2014 <=>y=1/2014 <=>x=2014

AI THẤY ĐÚNG THÌ !!!

7 tháng 10 2019

cho M=2013+X/2014-X. Tìm GTLN của X

25 tháng 2 2020

A=\(1-\frac{2}{x}+\frac{2014}{x^2}=1-\frac{2.\sqrt{2014}}{x}.\frac{1}{\sqrt{2014}}+\left(\frac{\sqrt{2014}}{x}\right)^2=\left(\frac{\sqrt{2014}}{x}\right)^2-\frac{2}{x}+\frac{1}{2014}+\frac{2013}{2014}=\left(\frac{\sqrt{2014}}{x}-\frac{1}{\sqrt{2014}}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\)

Vậy Min A là 2013/2014 với x=2014

19 tháng 8 2018

\(A=x^2+y^2-2x+6y+20\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+10\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+10\ge10\)

Vậy GTNN của A là 10 khi \(x=1\)\(y=-3\)

\(B=x^2+2y^2+2xy-4x-8y+2014\)

\(=\left[\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4\right]+\left(y^2-4y+4\right)+2006\)

\(=\left(x+y-2\right)^2+\left(y-2\right)^2+2006\ge2006\)

Vậy GTNN của B là 2006 khi \(x=0\)\(y=2\)

NV
20 tháng 3 2019

\(A=x^2+\left(3y\right)^2+4-6xy-12y+4x+x^2-10x+25+1985\)

\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1985\ge1985\)

\(\Rightarrow A_{min}=1985\) khi \(\left\{{}\begin{matrix}x=5\\y=\frac{7}{3}\end{matrix}\right.\)

NV
21 tháng 3 2019

\(A=x^2+\left(3y\right)^2+2^2-6xy+4x-12y+x^2-10x+25+1985\)

\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1985\ge1985\)

\(\Rightarrow A_{min}=1985\) khi \(\left\{{}\begin{matrix}x=5\\y=\frac{7}{3}\end{matrix}\right.\)

21 tháng 3 2019

A = \(2x^2+9y^2-6xy-6x-12y+2014\)

\(=\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+4+\left(x^2-10x+25\right)+100+1885\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1885\ge1885\)

Vậy GTNN của A = 1885 khi

\(\left\{{}\begin{matrix}x-3y+2=0\\x-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\\x-3y+2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=\frac{7}{3}\end{matrix}\right.\)

6 tháng 10 2019

a)x2-2x+m= (x-1)2+m-1 \(\ge m-1\) Min =2 => m-1 = 2 <=> m = 3

b) = 4x2-2x+6x+m= 4x2+4x+m = (2x+1)2+m-1 \(\ge m-1\) Min=1998 <=> m-1 = 1998 <=> m = 1999