Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)
Ta thấy \(x^2\ge0\forall x\)
=> \(x^2+4\ge4\forall x\)
=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)
=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)
\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)
1) \(A=x\left(2x-3\right)=2x^2-3x\)
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1,5}{\sqrt{2}}+\frac{2,25}{2}-1,125\)
\(=\left(\sqrt{2}x-\frac{1,5}{\sqrt{2}}\right)^2-1,125\ge-1,125\)
Vậy \(A_{min}=-1,125\Leftrightarrow\sqrt{2}x-\frac{1,5}{\sqrt{2}}=0\)
\(\Leftrightarrow x=\frac{3}{4}\)
2) \(21^{10}-1=\left(21^5+1\right)\left(21^5-1\right)\)
Dễ thấy 215 - 1 có tận cùng 00
\(\Rightarrow21^5-1⋮100\)
Ta có 215 có tận cùng bằng 1 nên 215 + 1 chia hết cho 2
\(\Rightarrow\left(21^5+1\right)\left(21^5-1\right)⋮200\)
hay \(21^{10}-1⋮200\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
Biểu thức A không có GTLN chỉ có GTNN thôi
b, Bạn thực hiện phép chia sẽ được dư là \(\left(a-1\right)x+b+6\)
Để \(x^3+4x^2+ax+b⋮x^2+x-2\) với mọi x thì:
\(\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)
Chúc bạn học tốt.
Ta có : A = x(x + 1)(x2 + x - 4)
= (x2 + x)(x2 + x - 4)
Đặt x2 + x = t
Khi đó A = t(t - 4)
= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> t - 2 = 0
=> t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 + 2x - x - 2 = 0
=> x(x + 2) - (x + 2) = 0
=> (x - 1)(x + 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A <=> t( t - 4 )
= t2 - 4t
= ( t2 - 4t + 4 ) - 4
= ( t - 2 )2 - 4
= ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra <=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1 ) + 2( x - 1 ) = 0
<=> ( x - 1 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
=> MinA = -4 <=> x = 1 hoặc x = -2
\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)
\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)
\(đếnđâytịt\)
b
c, =3 dễ
\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)
Ta có A = 2x2 + 12x + 1
= \(2\left(x^2+6x+\frac{1}{2}\right)=2\left(x^2+6x+9-\frac{17}{2}\right)=2\left(x+3\right)^2-17\ge-17\)
=> Min A = -17
Dấu "=" xảy ra <=> x + 3 = 0
<=> x = -3
Vậy Min A = -17 <=> x = -3
b) Ta có B = x2 + 3x + 2
= \(x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{1}{4}=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
=> Min B = -1/4
Dấu "=" xảy ra <=> x + 3/2 = 0 <=> x = -3/2
Vậy Min B = -1/4 <=> x = -3/2
a) \(2x^2+2x+5=2\left(x^2+2.\frac{1}{2}x+\frac{1}{4}\right)+5-\frac{2}{4}\)
\(=2\left[\left(x+\frac{1}{2}\right)^2\right]+\frac{9}{2}\)
=> Giá trị nhỏ nhất của biểu thức bằng \(\frac{9}{2}\) khi \(x=-\frac{1}{2}\)
b) Biểu thức câu b trái dấu với biểu thức câu a nên ta suy ra giá trị lớn nhất của biểu thức câu b là \(-\frac{9}{2}\)
\(P=\frac{2}{-4x^2+8x-5}=\frac{2}{-\left(4x^2-8x+5\right)}\)
\(=\frac{2}{-\left(4x^2-8x+4+1\right)}\)\(=\frac{2}{-4\left(x+1\right)^2-1}\)
\(\ge\frac{2}{-1}=-2\)\(\Rightarrow P\ge-2\)
Dấu = khi \(x=-1\)
Vậy MinP=-2 khi x=-1
A=7−x2−3x=−(x2+3x+\(\dfrac{9}{4}\))+ \(\dfrac{37}{4}\)
=−(x-\(\dfrac{3}{2}\))2+ \(\dfrac{37}{4}\)do:−(x-\(\dfrac{3}{2}\)
)2≤0=>−(x-\(\dfrac{3}{2}\)
)2+ \(\dfrac{37}{4}\)
≤ \(\dfrac{37}{4}\)
=>A≤\(\dfrac{37}{4}\)A=7−x2−3x=−(x2+3x+94)+374=−(x+32)2+374do:−(x+32)2≤0=>−(x+32)2+374≤374=>A≤3
Dấu = xảy ra khi x-\(\dfrac{3}{2}\)
=0=>x=\(\dfrac{3}{2}\)
x+32=0=>x=−3
vậy A max =\(\dfrac{37}{4}\)
374 đạt được khi x=\(\dfrac{3}{2}\)
:>