Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)\)
\(=\left(x^2+3x+1\right)^2-1\ge-1\) với moi x
Dấu "=" xảy ra <=> x2+3x+1=0
<=>\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0< =>\left(x+\frac{3}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(< =>\left(x+\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{3}{2}+\frac{\sqrt{5}}{2}\right)=0\)
<=>..... (x có 2 nghiệm)
Vậy Min của...=-1 khi.............
\(P=\frac{x^2}{x-1}\)
\(P=\frac{4x-4+x^2-4x+4}{x-1}\)
\(P=\frac{4x-4}{x-1}+\frac{x^2-4x+4}{x-1}\)
\(P=4+\frac{\left(x-2\right)^2}{x-1}\)
Ta có:\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\frac{\left(x-2\right)^2}{x-1}\ge0\)(Vì x>1)
\(\Rightarrow4+\frac{\left(x-2\right)^2}{x-1}\ge4\)
Vậy GTNN của P=4\(\Leftrightarrow\left(x-2\right)=0\Leftrightarrow x=2\)
k cho mk nha bn!
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(A=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x^2+y^2=20\\x^2=y^2\end{matrix}\right.\)\(\Rightarrow x=y=\pm\sqrt{10}\)
Vậy \(Min_A=\frac{1}{5}\) khi \(x=y=\pm\sqrt{10}\)
x2+4y2+6x+8y+1
=x2+6x+9+4y2+8y+4-12
=(x+3)2+(2y+2)2-12
\(\Rightarrow\)(x+3)2+(2y+2)2\(\ge\)0 với mọi x,y.
\(\Rightarrow\)(x+3)2+(2y+2)2 \(\ge\)-12 với mọi x,y.
Vay GTNN la -12
Dấu "=" xảy ra khi x+3=0 \(\Rightarrow\)x=-3
2y+2=0\(\Rightarrow\)y=-1
Nhớ k nha .
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
((X+1)^2)^2 bé hơn hoặc bằng 0
Suy ra x+1=0,Nên x=-1