K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

x=3 thì Min là 9 nha bạn

20 tháng 1 2020

vậy nếu x=5 thì sao nhỉ

20 tháng 12 2016

Vì \(x^2-8x+22=\left(x^2-8x+16\right)+6=\left(x-4\right)^2+6>0\) nên A luôn xác định.

Từ giả thiết ta có \(A\left(x^2-8x+22\right)=2x^2-16x+43\Leftrightarrow x^2\left(A-2\right)-8x\left(A-2\right)+\left(22A-43\right)=0\)

Để tồn tại GTNN của A thì phải tồn tại giá trị của x thỏa mãn GTNN đó, tức là PT trên có nghiệm.

Xét \(\Delta'=16\left(A-2\right)^2-\left(A-2\right)\left(22A-43\right)=\left(A-2\right)\left(11-6A\right)\ge0\)

\(\Leftrightarrow\frac{11}{6}\le A\le2\)

Vậy min A = 11/6 , max A = 2 (còn giá trị của x bạn tự tìm)

20 tháng 12 2016

Mình bổ sung cho lời giải bạn Ngọc một chút (dù gì đây là bài lớp 8),

Bạn có thể tìm trước min, max của A ngoài nháp, lúc trình bày để né Delta bạn viết như sau:

VD: minA=\(\frac{11}{6}\).

Bước 1: Làm cho mẫu có số 6. \(A=\frac{6\left(2x^2-16x+43\right)}{6\left(x^2-8x+22\right)}\).

Bước 2: Làm cho tử có số 11. \(A=\frac{11\left(x^2-8x+22\right)+x^2-8x+16}{6\left(x^2-8x+22\right)}\).

Nếu bạn làm đúng thì phần dư ra là một bình phương, quả nhiên  \(x^2-8x+16=\left(x-4\right)^2\).

Vậy \(A=\frac{11}{6}+\frac{\left(x-4\right)^2}{6\left(x^2-8x+22\right)}\ge\frac{11}{6}\). Đẳng thức xảy ra tại \(x=4\).

Hình như biểu thức không có max.

22 tháng 3 2017

\(P=\frac{x^2}{x-1}\)

\(P=\frac{4x-4+x^2-4x+4}{x-1}\)

\(P=\frac{4x-4}{x-1}+\frac{x^2-4x+4}{x-1}\)

\(P=4+\frac{\left(x-2\right)^2}{x-1}\)

Ta có:\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\frac{\left(x-2\right)^2}{x-1}\ge0\)(Vì x>1)

\(\Rightarrow4+\frac{\left(x-2\right)^2}{x-1}\ge4\)

Vậy GTNN của P=4\(\Leftrightarrow\left(x-2\right)=0\Leftrightarrow x=2\)

k cho mk nha bn!

22 tháng 3 2017

Ta có : x > 1 => x - 1 > 0

Để P có GTNN thì P < 0. Mà x - 1 > 0 nên x^2 < 0 ( trái dấu ) => vô lí

Vậy P không thể có giá trị âm. GTNN của P là 0 => x^2 = 0 (nhận) => x = 0.

Vậy GTNN của P là 0 tại x = 0