Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x^2-8x+22=\left(x^2-8x+16\right)+6=\left(x-4\right)^2+6>0\) nên A luôn xác định.
Từ giả thiết ta có \(A\left(x^2-8x+22\right)=2x^2-16x+43\Leftrightarrow x^2\left(A-2\right)-8x\left(A-2\right)+\left(22A-43\right)=0\)
Để tồn tại GTNN của A thì phải tồn tại giá trị của x thỏa mãn GTNN đó, tức là PT trên có nghiệm.
Xét \(\Delta'=16\left(A-2\right)^2-\left(A-2\right)\left(22A-43\right)=\left(A-2\right)\left(11-6A\right)\ge0\)
\(\Leftrightarrow\frac{11}{6}\le A\le2\)
Vậy min A = 11/6 , max A = 2 (còn giá trị của x bạn tự tìm)
Mình bổ sung cho lời giải bạn Ngọc một chút (dù gì đây là bài lớp 8),
Bạn có thể tìm trước min, max của A ngoài nháp, lúc trình bày để né Delta bạn viết như sau:
VD: minA=\(\frac{11}{6}\).
Bước 1: Làm cho mẫu có số 6. \(A=\frac{6\left(2x^2-16x+43\right)}{6\left(x^2-8x+22\right)}\).
Bước 2: Làm cho tử có số 11. \(A=\frac{11\left(x^2-8x+22\right)+x^2-8x+16}{6\left(x^2-8x+22\right)}\).
Nếu bạn làm đúng thì phần dư ra là một bình phương, quả nhiên \(x^2-8x+16=\left(x-4\right)^2\).
Vậy \(A=\frac{11}{6}+\frac{\left(x-4\right)^2}{6\left(x^2-8x+22\right)}\ge\frac{11}{6}\). Đẳng thức xảy ra tại \(x=4\).
Hình như biểu thức không có max.
\(P=\frac{x^2}{x-1}\)
\(P=\frac{4x-4+x^2-4x+4}{x-1}\)
\(P=\frac{4x-4}{x-1}+\frac{x^2-4x+4}{x-1}\)
\(P=4+\frac{\left(x-2\right)^2}{x-1}\)
Ta có:\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\frac{\left(x-2\right)^2}{x-1}\ge0\)(Vì x>1)
\(\Rightarrow4+\frac{\left(x-2\right)^2}{x-1}\ge4\)
Vậy GTNN của P=4\(\Leftrightarrow\left(x-2\right)=0\Leftrightarrow x=2\)
k cho mk nha bn!
x=3 thì Min là 9 nha bạn
vậy nếu x=5 thì sao nhỉ