K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)

M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)

M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)

Đặt \(\frac{1}{x^2+1}=y\)

Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)

Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10

<=> x2 = 9 <=> \(x=\pm3\)

Vậy MinM = 19/20 khi x = 3 hoặc x = -3

2 tháng 1 2020

Dạng này bạn chỉ cần để ý: \(x^4+2x^2+1=\left(x^2+1\right)^2\) là bình phương của một biểu thức.

Rồi đặt \(x^2+1=y\Rightarrow x^2=y-1\) rồi thay vào M là được!

20 tháng 12 2016

Vì \(x^2-8x+22=\left(x^2-8x+16\right)+6=\left(x-4\right)^2+6>0\) nên A luôn xác định.

Từ giả thiết ta có \(A\left(x^2-8x+22\right)=2x^2-16x+43\Leftrightarrow x^2\left(A-2\right)-8x\left(A-2\right)+\left(22A-43\right)=0\)

Để tồn tại GTNN của A thì phải tồn tại giá trị của x thỏa mãn GTNN đó, tức là PT trên có nghiệm.

Xét \(\Delta'=16\left(A-2\right)^2-\left(A-2\right)\left(22A-43\right)=\left(A-2\right)\left(11-6A\right)\ge0\)

\(\Leftrightarrow\frac{11}{6}\le A\le2\)

Vậy min A = 11/6 , max A = 2 (còn giá trị của x bạn tự tìm)

20 tháng 12 2016

Mình bổ sung cho lời giải bạn Ngọc một chút (dù gì đây là bài lớp 8),

Bạn có thể tìm trước min, max của A ngoài nháp, lúc trình bày để né Delta bạn viết như sau:

VD: minA=\(\frac{11}{6}\).

Bước 1: Làm cho mẫu có số 6. \(A=\frac{6\left(2x^2-16x+43\right)}{6\left(x^2-8x+22\right)}\).

Bước 2: Làm cho tử có số 11. \(A=\frac{11\left(x^2-8x+22\right)+x^2-8x+16}{6\left(x^2-8x+22\right)}\).

Nếu bạn làm đúng thì phần dư ra là một bình phương, quả nhiên  \(x^2-8x+16=\left(x-4\right)^2\).

Vậy \(A=\frac{11}{6}+\frac{\left(x-4\right)^2}{6\left(x^2-8x+22\right)}\ge\frac{11}{6}\). Đẳng thức xảy ra tại \(x=4\).

Hình như biểu thức không có max.

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Lời giải:

ĐK: $x\neq 0$

\(P=\frac{-2x+2019+x^2}{x^2}(1)\) \(\Rightarrow Px^2=-2x+2019+x^2\)

\(\Leftrightarrow x^2(P-1)+2x-2019=0(*)\)

Vì PT $(1)$ tồn tại nên PT $(*)$ luôn có nghiệm

$\Rightarrow \Delta'_{(*)}=1-(P-1)(-2019)\geq 0$

$\Leftrightarrow P\geq \frac{2018}{2019}$

Vậy $P_{\min}=\frac{2018}{2019}$

29 tháng 1 2020

Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :

\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)

Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)

Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)

13 tháng 2 2019

\(N=\frac{1}{2x-x^2-4}\)ĐKXĐ : \(x\in R\)

\(N=\frac{1}{-\left(x^2-2x+4\right)}\)

\(N=\frac{1}{-\left(x^2-2x+1+3\right)}\)

\(N=\frac{1}{-\left[\left(x-1\right)^2+3\right]}\)

\(N=\frac{1}{-3-\left(x-1\right)^2}\ge\frac{-1}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)( thỏa mãn ĐKXĐ )

Vậy....

LỒN ĐỤ CẶC