Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=[(x-1)(x+6)][(x+2)(x+3)]
=(x2+5x-6)(x2+5x+6)
=(x2+5x)2-36
Ta thấy (x2+5x)2 >=0 nên (x2+5x)2-36 >=-36
Vậy GTNN của A là -36
\(P=\frac{x^2}{x-1}\)
\(P=\frac{4x-4+x^2-4x+4}{x-1}\)
\(P=\frac{4x-4}{x-1}+\frac{x^2-4x+4}{x-1}\)
\(P=4+\frac{\left(x-2\right)^2}{x-1}\)
Ta có:\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\frac{\left(x-2\right)^2}{x-1}\ge0\)(Vì x>1)
\(\Rightarrow4+\frac{\left(x-2\right)^2}{x-1}\ge4\)
Vậy GTNN của P=4\(\Leftrightarrow\left(x-2\right)=0\Leftrightarrow x=2\)
k cho mk nha bn!
\(A=\frac{x^2-3}{\left(x-2\right)^2}=\frac{-3x^2+12x-12+4x^2-12x+9}{\left(x-2\right)^2}\)
\(=-3+\frac{4x^2-12x+9}{\left(x-2\right)^2}=-3+\frac{\left(2x-3\right)^2}{\left(x-2\right)^2}\ge-3\)
Vậy GTNN là - 3 đạt được khi x = 1,5
Câu a :
Ta có :
\(x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Do : \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy GTNN của biểu thức trên \(=\dfrac{11}{4}\)
Dấu \(=\) xảy ra khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Câu b :
Ta có :
\(-x^2+6-8\)
\(=-x^2+6x-9+1\)
\(=-\left(x^2-6x+9\right)+1\)
\(=-\left(x-3\right)^2+1\)
Do :
\(\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+1\le1\)
Vâỵ GTNN của biểu thức \(=11\)
Dấu \(=\) xảy ra khi \(\left(x-3\right)^2=0\Rightarrow x=3\)
a) 3 x^2 - 6x - 1
= 3 ( x^2 - 2x - 1/3 )
= 3 ( x^2 - 2x + 1 - 4/3)
= 3 [ ( x- 1 )^2 - 4/3)
=3 ( x- 1 )^2 - 4
Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4
VẬy GTNN là 4 khi x- 1 = 0 => x = 1
b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )
= ( x - 1 )( x+ 6 )( x+ 2 )( x+ 3 )
= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )
Đặt x^2 + 5x = t ta có :
= ( t- 6 )( t+ 6 )
= t^2 - 36
Vì t^2 >=0 => t^2 -36 >= -36
VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5
Nhớ ****
\(D=x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của D là \(\frac{3}{4}\)khi x = \(\frac{1}{2}\)
\(E=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
Vậy GTNN của E là \(-\frac{9}{4}\)khi x = \(\frac{3}{2}\)
\(G=x^2+5y^2+2xy-2y+100\)
\(G=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+\frac{399}{4}\)
\(G=\left(x+y\right)^2+\left(2y-\frac{1}{2}\right)^2+\frac{399}{4}\ge\frac{399}{4}\)
Vậy GTNN của G là \(\frac{399}{4}\)khi x = \(-\frac{1}{4}\); y = \(\frac{1}{4}\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)\)
\(=\left(x^2+3x+1\right)^2-1\ge-1\) với moi x
Dấu "=" xảy ra <=> x2+3x+1=0
<=>\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0< =>\left(x+\frac{3}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)
\(< =>\left(x+\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{3}{2}+\frac{\sqrt{5}}{2}\right)=0\)
<=>..... (x có 2 nghiệm)
Vậy Min của...=-1 khi.............