Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 + 2y2 + 2xy - 2x - 6y + 6
A = (x2 + 2xy + y2) - 2(x + y) + 1 + (y2 - 4y + 4) + 1
A = (x + y - 1)2 + (y - 2)2 + 1 \(\ge\)1 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1-y\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy MinA = 1 khi x = -1 và y = 2
A = x2 - 4x + 7
= x( x - 4 ) + 7
Vì x( x - 4 ) \(\le\)0
=> Để x( x - 4 ) + 7 \(\le\)7
=> A \(\ge\)- 7
Vậy GTNN A = - 7 khi x( x - 4 ) = - 7
Ta có : A = x2 - 4x + 7
= x2 - 4x + 4 + 3
A = (x - 2)2 + 3
Vì : \(\left(x-2\right)^2\ge0\forall x\)
Nên : A = (x - 2)2 + 3 \(\ge3\forall x\)
Vậy Amin = 3 khi x = 2
a) \(A=x^2+\left(2y-1\right)^2\)
Vì \(x^2\ge0,\left(2y-1\right)^2\ge0\)
\(\Rightarrow A\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{1}{2}\end{cases}}\)
Vậy Min A=0 <=> x=0, y=0,5
b)\(B=\left(2x-1\right)^{2016}-1\)
Vì \(\left(2x-1\right)^{2016}\ge0\)
\(\rightarrow B\ge-1\)
Dấu "=" xảy ra khi và chỉ khi 2x-1=0 <->x=0,5
Vậy min B = -1 <=> x=0,5
a) \(x^2\ge0\)\(;\)\(\left(2y-1\right)^2\ge0\)
\(\Rightarrow A=x^2+\left(2y-1\right)^2\ge0\)
Đẳng thức xảy ra khi: \(x^2=0\Rightarrow x=0\)\(;\)\(\left(2y-1\right)^2=0\Rightarrow2y-1=0\Rightarrow y=\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là 0 khi x = 0 ; y = \(\frac{1}{2}\).
b)\(\left(2x-1\right)^{2016}\ge0\)\(\Rightarrow B=\left(2x-1\right)^{2016}-1\ge-1\)
Đẳng thức xảy ra khi: \(\left(2x-1\right)^{2016}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy giá trị nhỏ nhất của B là -1 khi x = \(\frac{1}{2}\)
= X^2 - 2X+1 +2 = (X-1)^2 +2 \(\ge2\)
Dấu = xảy ra <=> x-1 = 0 => x=1
Vậy min A = 2 khi x=1
\(x^2+2x+3\)
\(=x^2+2x.1+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
\(Min=2\Leftrightarrow x+1=0\Rightarrow x=-1\)
\(A=x^2-2x+2\)
\(A=x^2-2x+1+1\)
\(A=\left(x-1\right)^2+1\ge1\)
\(MinA=1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
(Nhớ k cho mình với nhoa!)
\(A=x^2-2.1.x+1+2\Rightarrow A=\left(x-1\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x-1=0\Rightarrow x=1\)
t i c k cho mình nha cảm ơn