Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
\(a)\) Ta có :
\(x^2\ge0\)
\(\Rightarrow\)\(A=x^2+3\ge3\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy GTNN của \(A\) là \(3\) khi \(x=0\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\left(x+3\right)^2\ge0\)
\(\Rightarrow\)\(B=\left(x+3\right)^2+9\ge9\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy GTNN của \(B\) là \(9\) khi \(x=-3\)
Chúc bạn học tốt ~
Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này
A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]
(X-Y+1)\(^2\)+(Y-4)\(^2\)
\(\Rightarrow=0\)
=>Amin=0 khi y=4;x=3
Đặt \(KK=x^2-2xy+2y^2+2x-10y+17\)
\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)
\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)
\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)
Mà \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
\(\Rightarrow KK\ge0\)
Dấu " = " xảy ra khi :
\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)
a) A = x2 + 2x + 6
A = x2 + 2x + 1 + 5
A = ( x + 1)2 + 5
Do : ( x + 1)2 ≥ 0 ∀x
⇒ ( x + 1)2 + 5 ≥ 5 ∀x
⇒ AMIN = 5 ⇔ x = -1
b) B = x2 - 4x + 3
B = x2 - 4x + 4 - 1
B = ( x - 2)2 - 1
Do : ( x - 2)2 ≥ 0 ∀x
⇒ ( x - 2)2 - 1 ≥ - 1 ∀x
⇒ BMIN = -1 ⇔ x = 2
\(x^2+2x+3\)
\(=x^2+2x.1+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
\(Min=2\Leftrightarrow x+1=0\Rightarrow x=-1\)