Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
\(B=2x^2+y^2-2xy-2x+3\)
\(=\left(x^2-2xy+y^2\right)+(x^2-2x+1)+2\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\forall x;y\)
\(D=\left(x+8\right)^4+\left(x+6\right)^4\ge0\forall x\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left(x+6\right)^4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-8\\x=-6\end{cases}}\)
cứ bọn nào bp cho về không hết
A=0
B=1
C=? không có BP => không có
D=1
Bạn có Thực sự muốn hiểu bản chất thì cách làm chưa đúng
Đáp số 100% đúng
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
Ta có : A = -x3(3x - 1) - x(1 + 3x4) - x2(x2 - x - 2)
=> A = x3 - 3x4 - x + 3x5 - x4 - x3 - 2x2
B = -x2(2x2 - 2x - 4) - 2x(2 - 4x4) - 2x3(2x - 2)
=> B = -2x4 + 2x3 + 4x2 - 4x - 8x5 - 4x4 - 4x3
* Rút gọn : A = x3 - 3x4 - x + 3x5 - x4 - x3 - 2x2
=> A = (x3 - x3) + (-3x4 - x4) - x + 3x5 - 2x2
=> A = -4x4 - x + 3x5 - 2x2
B = -2x4 + 2x3 + 4x2 - 4x - 8x5 - 4x4 - 4x3
=> B = (-2x4 - 4x4) + (2x3 - 4x3) + 4x2 - 4x - 8x5
=> B = -6x4 - 2x3 + 4x2 - 4x - 8x5
* Tính A - B
A = 3x5 - 4x4 - 2x2 - x
B = - 8x5 - 6x4 - 2x3 + 4x2 - 4x
-------------------------------------------------------
A - B = 11x5 + 2x4 + 2x3 - 6x2 + 3x
=> A - B = 11x5 + 2x4 + 2x3 - 6x2 + 3x
* Tính B - A
B = -8x5 - 6x4 - 2x3 + 4x2 - 4x
A = 3x5 - 4x4 - 2x2 - x
------------------------------------------------
B - A = -11x5 - 2x4 - 2x3 + 6x2 - 5x
* Tính A + B
A = 3x5 - 4x4 - 2x2 - x
B = -8x5 - 6x4 - 2x3 + 4x2 - 4x
---------------------------------------------------
A + B = -5x5 - 10x4 - 2x3 + 2x2 - 5x
Và cái cuối cùng tự làm nhé
Nếu không biết làm cách 2 thì làm cách 1 trong sách
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
\(a,\)Ta có : \(P\left(x\right)+Q\left(x\right)=-3x^4+5x^3+2x^2-7x+7-x^4-x^3+2x^2+6x^3-2x^4-3x-1\)
\(=\left(-3x^4-x^4-2x^4\right)+\left(5x^3-x^3+6x^3\right)+\left(2x^2+2x^2\right)+\left(-7x-3x\right)+\left(7-1\right)\)
\(=-6x^4+10x^3+4x^2-10x+6\)
\(P\left(x\right)-Q\left(x\right)=\left(-3x^4+5x^3+2x^2-7x+7\right)-\left(-x^4-x^3+2x^2+6x^3-2x^4-3x-1\right)\)
\(=-3x^4+5x^3+2x^2-7x+7+x^4+x^3-2x^2-6x^3+2x^4+3x+1\)
\(=\left(-3x^4+x^4+2x^4\right)+\left(5x^3+x^3-6x^3\right)+\left(2x^2-2x^2\right)+\left(-7x+3x\right)+\left(7+1\right)\)
\(=-4x+8\)
b, Nghiệm của đa thức P(x) - Q(x) là x = 2