Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|\left|x-1\right|-1\right|=2\Rightarrow\orbr{\begin{cases}\left|x-1\right|-1=2\\\left|x-1\right|-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=3\\\left|x-1\right|=-1\left(l\right)\end{cases}}\)
TH1: x - 1 = 3
x = 4
TH2: x - 1 = - 3
x = - 2
b) Tương tự câu a.
c) \(\left|\left|2x-3\right|-x+1\right|=42-8\)
\(\left|\left|2x-3\right|-x+1\right|=34\)
TH1: \(\left|2x-3\right|-x+1=34\)
\(\left|2x-3\right|-x=33\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=33\Rightarrow x=36\) (tm)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=34\Rightarrow-3x=30\Rightarrow x=-10\left(tm\right)\)
TH2: \(\left|2x-3\right|-x+1=-34\)
\(\left|2x-3\right|-x=-35\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=-35\Rightarrow x=-32\) (l)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=-34\Rightarrow-3x=38\Rightarrow x=\frac{38}{3}\left(l\right)\)
d) Tương tự câu c.
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
A = |x| + 7
|x| >/ 0
=> A >/ 7
Vậy GTNN của A = 7 kh |x| = 0 <=> x= 0
a, \(A=\left(3x+1\right)^2+15\ge15\)
Dấu ''='' xảy ra khi x = -1/3
b, \(B=\left|2x-10\right|+3\ge3\)
Dấu ''='' xảy ra kho x = 5
c, \(C=\left|x+5\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -5
d, \(D=3\left(x+1\right)^2-2\ge-2\)
Dấu ''='' xảy ra khi x = -1
a, \(A=\left(3x+1\right)^2+15\)
Với mọi x ta có \(\left(3x+1\right)^2\ge0\)Do đó \(\left(3x+1\right)^2+15\ge15\)
GTNN của A = 15 khi và chỉ khi \(\left(3x+1\right)^2=0\Leftrightarrow3x+1=0\Leftrightarrow3x=-1\Leftrightarrow x=-\frac{1}{3}\)
b, \(B=\left|2x-10\right|+3\)
Với mọi x, ta có :
\(\left|2x-10\right|\ge0\)do đó \(\left|2x-10\right|+3\ge3\)
GTNN của B = 3 khi và chỉ khi \(2x-10=0\Leftrightarrow x=5\)