Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tương tự baì đẳng trên mình vừa làm đấy
|A| <= 0 với mọi A
thì -|A| <= 0 vứi mọi A
tương tự với bình phương một số
a, \(A=\left(3x+1\right)^2+15\ge15\)
Dấu ''='' xảy ra khi x = -1/3
b, \(B=\left|2x-10\right|+3\ge3\)
Dấu ''='' xảy ra kho x = 5
c, \(C=\left|x+5\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -5
d, \(D=3\left(x+1\right)^2-2\ge-2\)
Dấu ''='' xảy ra khi x = -1
a, \(A=\left(3x+1\right)^2+15\)
Với mọi x ta có \(\left(3x+1\right)^2\ge0\)Do đó \(\left(3x+1\right)^2+15\ge15\)
GTNN của A = 15 khi và chỉ khi \(\left(3x+1\right)^2=0\Leftrightarrow3x+1=0\Leftrightarrow3x=-1\Leftrightarrow x=-\frac{1}{3}\)
b, \(B=\left|2x-10\right|+3\)
Với mọi x, ta có :
\(\left|2x-10\right|\ge0\)do đó \(\left|2x-10\right|+3\ge3\)
GTNN của B = 3 khi và chỉ khi \(2x-10=0\Leftrightarrow x=5\)
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3
a, Ta có: \(\left|7-x\right|\ge0\Rightarrow-\left|7-x\right|\le0\Rightarrow A=-100-\left|7-x\right|\le-100\)
Dấu "=" xảy ra khi |7 - x| = 0 => x = 7
Vậy MaxA = -100 khi x = 7
b, Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left|2-y\right|\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)
\(\Rightarrow B=-\left(x+1\right)^2-\left|2-y\right|+11\le11\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}-\left(x+1\right)^2=0\\\left|2-y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy MaxB = 11 khi x = -1 và y = 2
c, Ta có: \(\hept{\begin{cases}\left(x+5\right)^2\ge0\\\left(2y-6\right)^2\ge0\end{cases}}\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2\ge0\)
\(\Rightarrow C=\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}\)
Vậy MinC = 1 khi x = -5 và y = 3
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2