K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2020

\(A=x^4-3x^3+4x^2-3x+10=\left(x^4-3x^3+4x^2-3x+1\right)+9=\left(x-1\right)^2\left(x^2-x+1\right)+9\ge9\)(do \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\x^2-x+1>0\forall x\end{cases}}\))

Đẳng thức xảy ra khi x = 1

31 tháng 10 2018

a)C=(x2-3x+1)2>=0

31 tháng 10 2018

c ) \(C=\left(x^2-3x+1\right)\left(x^2-3x+1\right)=\left(x^2-3x+1\right)^2\ge0\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x^2-3x+1=0\)

\(\Leftrightarrow x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy Min C là : \(0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)

d ) \(D=\left(x^2-4x+1\right)\left(x^2-4x+5\right)\)

\(=\left(x^2-4x+3-2\right)\left(x^2-4x+3+2\right)\)

\(=\left(x^2-4x+3\right)^2-4\ge-4\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy Min D là : \(-4\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

8 tháng 8 2017

1/ \(M=x^2-2x.15+225-198\)

\(M=\left(x-15\right)^2-198\ge-198\)

\(Min\)\(M=-198\Leftrightarrow x=15\)

30 tháng 7 2018

từ từ ít ít từng câu thôi bạn ơi