K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

12 tháng 7 2018

1.

A=\(4x^2-4x+5\)

A=\(\left(2x\right)^2-4x+1+4\)

A=\(\left(2x-1\right)^2+4\)

\(\left(2x-1\right)^2\)≥0 với mọi x

\(\left(2x-1\right)^2+4\)≥4 với mọi x

Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0

⇔2x-1=0

⇔x=\(\dfrac{1}{2}\)

Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)

B=\(3x^2+6x-1\)

B=3(\(\left(x^2+2x\right)\)-1

B=\(3.\left(x^2+2x-1+1\right)-1\)

B=\(3.\left(x+1\right)^2-3-1\)

B=\(3\left(x-1\right)^2-4\)

\(3.\left(x-1\right)^2\)≥0 với mọi x

\(3\left(x-1\right)^2-4\)≥-4 với mọi x

dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)

⇔x-1=0

⇔x=1

vậy GTNN của B=-4 khi x=1

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

8 tháng 8 2019

B1: 

a, \(4x^2+y\left(y-4x\right)-9\)

\(=4x^2+y^2-4xy-9\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y+3\right)\left(x-y-3\right)\)

8 tháng 8 2019

1.

b) \(a^2-b^2+a-b\)

\(=\left(a^2-b^2\right)+\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b+1\right)\)

2 tháng 10 2018

a) \(A=x^2+6x+10\)

\(A=x^2+2\cdot x\cdot3+3^2+1\)

\(A=\left(x+3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

b) \(B=2x^2+y^2+2xy+4x+15\)

\(B=\left(x^2+2xy+y^2\right)+\left(x^2+2\cdot x\cdot2+2^2\right)+11\)

\(B=\left(x+y\right)^2+\left(x+2\right)^2+11\ge11\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=2\\x=-2\end{cases}}\)

5 tháng 7 2017

https://olm.vn/hoi-dapDễ z mà ko bít ..

25 tháng 7 2015

\(A\left(x\right)=-\left(x^2-\frac{5}{3}x\right)+1=-3\left(x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2\right)+1+3.\left(\frac{5}{6}\right)^2\)

\(=-3\left(x-\frac{5}{6}\right)^2+\frac{37}{12}\le\frac{37}{12}\)

Dấu "=" xảy ra khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Vậy GTLN của A là 37/12.

b, c làm tương tự.