K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Có \(\left(2x+\frac{1}{3}\right)^2\ge0\)với mọi x

=> \(\left(2x+\frac{1}{3}\right)^2-1\ge1\)với mọi x

=> A \(\ge\)1 với mọi x

Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\)<=> \(2x=\frac{-1}{3}\)<=> \(x=\frac{-1}{6}\)

KL: Amin = 1 <=> \(x=\frac{-1}{6}\)

5 tháng 4 2017

a. (x+2)2 >= 0

(y-1/5)2 >= 0

=> MinC = -10 khi x = -2, y = 1/5

b. (2x-3)2 + 5 >= 5

D đạt max khi mẫu đạt min (Mẫu > 0)

=> MaxD = 4/5 khi x = 3/2

25 tháng 2 2017

\(E=2x^2+\frac{1}{3}x-4=2\left(x^2+2.\frac{1}{12}.x+\frac{1}{144}\right)-\frac{289}{72}=2\left(x+\frac{1}{12}\right)^2-\frac{289}{72}\ge-\frac{289}{72}\)

Emin=-289/72 khi x=-1/12

5 tháng 4 2020

Bài 1 :

a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

b) Ta thấy : \(B=x^2+4x-100\)

\(=\left(x+4\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy \(Min_B=-104\Leftrightarrow x=-4\)

c) Ta thấy : \(C=\frac{4-x}{x-3}\)

\(=\frac{3-x+1}{x-3}\)

\(=-1+\frac{1}{x-3}\)

Để C min \(\Leftrightarrow\frac{1}{x-3}\)min

\(\Leftrightarrow x-3\)max

\(\Leftrightarrow x\)max

Vậy để C min \(\Leftrightarrow\)\(x\)max

p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình

Bài 2 : 

a) Ta thấy : \(x^2\ge0\)

                  \(\left|y+1\right|\ge0\)

\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)

\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)

b) Để B max

\(\Leftrightarrow\left(x+3\right)^2+2\)min

Ta thấy : \(\left(x+3\right)^2\ge0\)

\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)

c) Ta thấy : \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow x^2+2x+1\ge0\)

\(\Leftrightarrow-x^2-2x-1\le0\)

\(\Leftrightarrow C=-x^2-2x+7\le8\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(Max_C=8\Leftrightarrow x=-1\)

17 tháng 3 2019

A;B;C dùng t/c \(A^2\ge0\) và \(\left|A\right|\ge0\) là ra.

 Mình giúp bài D thôi nhé: Thêm đk x thuộc Z.Chứ không thì không biết đâu mà lần.

\(D=\frac{x+3}{x-4}=1+\frac{7}{x-4}\).D lớn nhất khi x - 4 là số nguyên dương nhỏ nhất

Suy ra x - 4 = 1 tức là x = 5

Suy ra \(D\le1+\frac{7}{5-4}=1+7=8\)

Dấu "=' xảy ra khi x = 5

Vậy....

11 tháng 7 2017

a, Với mọi giá trị của x;y ta có:

\(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)

Hay \(C\ge-10\)với mọi giá trị của x;y

Để \(C=-10\) thì \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10=-10\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy................

b, Với mọi giá trị của x ta có:

\(\left(2x-1\right)^2+3\ge3\Rightarrow\dfrac{5}{\left(2x-1\right)^2+3}\ge\dfrac{5}{3}\)

Hay \(D\ge\dfrac{5}{3}\) với mọi giá trị của x.

Để \(D=\dfrac{5}{3}\) thì \(\dfrac{5}{\left(2x-1\right)^2+3}=\dfrac{5}{3}\)

\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

Vậy..................

Chúc bạn học tốt!!!

11 tháng 7 2017

\(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\)

\(\left(x+1\right)^2\ge0;\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(C_{MIN}\Rightarrow\left(x+1\right)^2_{MIN};\left(y-\dfrac{1}{3}\right)^2_{MIN}\)

\(\left(x+1\right)^2_{MIN}=0;\left(y-\dfrac{1}{3}\right)^2_{MIN}=0\)

\(\Rightarrow C_{MIN}=0+0-10=-10\)

\(D=\dfrac{5}{\left(2x-1\right)^2+3}\)

\(D_{MAX}\Rightarrow\left(2x-1\right)^2+3_{MIN}\)

\(\left(2x-1\right)^2\ge0\)

\(\left(2x-1\right)^2+3_{MIN}\Rightarrow\left(2x-1\right)^2_{MIN}=0\)

\(\Rightarrow\left(2x-1\right)^2+3_{MIN}=0+3=3\)

\(\Rightarrow D_{MAX}=\dfrac{5}{3}\)