Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, Thay x = \(\frac{-2}{3}\)vào biểu thức A = 6x3 - 3x2 + 2 * |x| + 4 ta có:
=> A = \(6\left(-\frac{2}{3}\right)^3-3\left(-\frac{2}{3}\right)^2+\left|-\frac{2}{3}\right|+4\)
=> A = \(6\left(-\frac{8}{27}\right)-3\cdot\frac{4}{9}+\frac{2}{3}+4\)
=> A = \(-\frac{16}{9}-\frac{4}{3}+\frac{2}{3}+4\) (Đến đây bạn tự giải tiếp nha)
Vậy giá trị của biểu thức A = 6x3 - 3x2 + 2 * |x| + 4 với x = \(\frac{-2}{3}\)là "KQ bạn tính nha"
Nhưng bạn có thể giúp mình bài 2 được ko,còn bài 3 thì mình giải được rồi
Bài 1 :
a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)
Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)
b) Ta thấy : \(B=x^2+4x-100\)
\(=\left(x+4\right)^2-104\ge-104\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy \(Min_B=-104\Leftrightarrow x=-4\)
c) Ta thấy : \(C=\frac{4-x}{x-3}\)
\(=\frac{3-x+1}{x-3}\)
\(=-1+\frac{1}{x-3}\)
Để C min \(\Leftrightarrow\frac{1}{x-3}\)min
\(\Leftrightarrow x-3\)max
\(\Leftrightarrow x\)max
Vậy để C min \(\Leftrightarrow\)\(x\)max
p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình
Bài 2 :
a) Ta thấy : \(x^2\ge0\)
\(\left|y+1\right|\ge0\)
\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)
\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)
b) Để B max
\(\Leftrightarrow\left(x+3\right)^2+2\)min
Ta thấy : \(\left(x+3\right)^2\ge0\)
\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)
c) Ta thấy : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow x^2+2x+1\ge0\)
\(\Leftrightarrow-x^2-2x-1\le0\)
\(\Leftrightarrow C=-x^2-2x+7\le8\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(Max_C=8\Leftrightarrow x=-1\)
Bài 3:
Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))
=> a = 9.1 = 9
Ta có: x2 = 9 và y2 = 1
=> x = -3, 3
y = -1; 1
Mình làm bài 4, bài 5 làm tương tự bài 4 nhé
Biết rằng: \(\left|A\right|\ge A\)
\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)
Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)
Với x = 5 thì A đạt gtnn là: 4
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43