K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

\(x^2-4x+7\) 

⇔ \(\left(x^2-4x+4\right)+3\)

⇔  \(\left(x-2\right)^2+3\)

Vì \(\left(x-2\right)^2\ge0\) ⇒ \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x =2  

\(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=2

12 tháng 6 2018

\(A=x^2-6x+3\)

\(=\left(x^2-6x+9\right)-6\)

\(=\left(x+3\right)^2-6\)

ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)

vậy gtnn của A là -6 tại x=-3

\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

vay .............................................

2/

\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)

vay .........................................

\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)

vay.....................................

nếu có sai mong bạn thông cảm

12 tháng 6 2018

ko sao cảm ơn

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

9 tháng 7 2017

k lại đi

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

22 tháng 11 2019

a)

A=\(x^2+4x+7\)

=\(x^2+4x+4+3\)

=\(\left(x+2\right)^2+3\)

Do (x+2)2\(\ge0\)\(\Rightarrow\left(x+2\right)^2\ge3\)

Dấu ''='' xảy ra khi

\(x+2=0\Rightarrow x=-2\)

Vậy GTNN của A là A=3 tại x=-2

B=\(x^2+4x-7\)

=\(\left(x^2+4x+4\right)-11\)

=\(\left(x+2\right)^2-11\)

Do (x+2)2\(\ge0\Rightarrow\left(x+2\right)^2-11\ge-11\)

Dấu''='' xảy ra khi

\(x+2=0\Rightarrow x=-2\)

Vậy GTNN Của B là B=-11 với x=-2

b) M=\(7-4x-x^2\)

=\(-\left(7+4x+x^2\right)\)

=\(-\left(3+\left(x+2\right)^2\right)\)

=-\(\left(x+2\right)^2-3\)

Do \(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\Rightarrow-\left(x+2\right)^2-3\le-3\)

Dấu = xảy ra khi

\(x+2=0\Rightarrow x=2\)

Vậy GTNN Của M là M min =-3 tại x=2

24 tháng 11 2016

a) Ta có:H=4x^2+4x+5

=[(2x)^2+2.x.2+1^2]+4

=(2x+1)^2+4 

vì (2x+1)^2 lớn hơn hoặc bằng 0 nên GTNN của H=4 khi và chỉ khi 2x+1=0 suy ra x=-1/2

b)Ta có G=12x-1-4x^2

=-4x^2-1-12x

=-[(2x)^2+2.2x.3+3^2]+8

=8-(2x+3)^2

Vì (2x+3)^2 lớn hơn hoặc bằng 0 nên GTLN của G=8 khi và chỉ khi 2x+3=0 suy ra x=-3/2

c)Ta có K=x^2+x+1

=[x^2+2.x.1/2+(1/2)^2]+3/4

=(x+1/2)^2+3/4

Vì x+1/2 lớn hơn hoặc bằng 0 nên GTNN của K =3/4 khi và chỉ khi x+1/2=0 suy ra x=-1/2