K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

B=\(\frac{2011-x}{11-x}\) nha ghi sai

5 tháng 9 2020

Ta có: 

\(B=\frac{2011-x}{11-x}=\frac{2000+\left(11-x\right)}{11-x}=1+\frac{2000}{11-x}\)

Để B đạt GTLN

=> \(\frac{2000}{11-x}\) đạt GTLN

Mà x nguyên nên dấu "=" xảy ra khi: \(11-x=1\Rightarrow x=10\)

Vậy Max(B) = 2001 khi x = 10

21 tháng 3 2017

TA CÓ : 32-2X/11-X

=10+22-2X/11-X

=10+2(11-X)/11-X

=10/11-X  +   2(11-X)/11-X

=10/11-X    +2

ĐỂ Amin =>10/11-X   +   2    BÉ NHẤT

=> 10/11-X  BÉ NHẤT

=> 11-X  LỚN NHẤT  . MÀ X thuôc Z

=>11-x=11  =>  X=0

=> Amin=32-2x0/11-0  =32/11

 VÂY Amin=32/11  <=>  X=0

21 tháng 3 2017

\(A=\frac{32-2x}{11-x}=\frac{10}{11-x}+\frac{22-2x}{11-x}=\frac{10}{11-x}+\frac{2\left(11-x\right)}{11-x}=\frac{10}{11-x}+2\)

A đạt giá trị lớn nhất => \(\frac{10}{11-x}\) lớn nhất => 11-x lớn nhỏ nhất > 0

mà x thuộc Z => 11-x=1 => x=10

Vậy \(A_{max}=\frac{10}{11-10}+2=12\) khi x=10

19 tháng 2 2019

a) \(-ĐKXĐ:x\ne\pm2;1\)

Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)

b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)

\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)

Vậy với mọi x thỏa mãn x>1 thì A > 0

c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy x = -1;-2

28 tháng 7 2018

\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)

Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)

Dấu "=" xảy ra khi x=1/2

Vậy Cmin=-6 khi x=1/2

28 tháng 7 2018

\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)

Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)

\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)

\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)

\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)

Dấu "=" xảy ra khi x=y=10

Vậy Emax = 100/201 khi x=y=10

18 tháng 12 2018

Câu 2 hình như sai đề bạn ey.

18 tháng 12 2018

Câu 1: 

Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)

Thật vậy,điều cần c/m  \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)

Vậy BĐT phụ (Cô si) là đúng.

----------------------------------------------------------

Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)

Do đó: 

\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

3 tháng 2 2020

\(ĐKXĐ:x\ne0;x\ne\pm2\)

a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=-\frac{1}{x-2}\)

\(\Leftrightarrow M=\frac{1}{2-x}\)

b) Để M đạt giá trị lớn nhất

\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất

\(\Leftrightarrow x\)đạt giá trị lớn nhất

Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)

5 tháng 2 2020

玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường

12 tháng 3 2019

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{8x}{x^2-1}\right):\left(\frac{2x-2x^2-6}{x^2-1}-\frac{2}{x-1}\right)\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{8x}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{2x-2x^2-6}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)

\(A=\left(\frac{x^2+2x+1-x^2+2x-1-8x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x-2x^2-6-2x-2}{\left(x+1\right)\left(x-1\right)}\right)\)

\(A=\left(\frac{4x-8x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{-2x^2-8}\)

.......... 

12 tháng 3 2019

\(\frac{x+32}{2008}+\frac{x+31}{2009}+\frac{x+29}{2011}+\frac{x+28}{2012}+\frac{x+2056}{4}=0\) \(=0\)

\(\Leftrightarrow\)\(\frac{x+32}{2008}+1+\frac{x+31}{2009}+1+\frac{x+29}{2011}+1\)\(+\frac{x+28}{2012}+1+\frac{x+2056}{4}-4\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+32}{2008}+\frac{2008}{2008}+\frac{x+31}{2009}+\frac{2009}{2009}+\)\(\frac{x+29}{2011}+\frac{2011}{2011}+\frac{x+28}{2012}+\frac{2012}{2012}+\)\(\frac{x+2056}{4}-\frac{16}{4}\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+32+2008}{2008}+\frac{x+31+2009}{2009}\)\(+\frac{x+29+2011}{2011}+\frac{x+28+2012}{2012}\)\(+\frac{x+2056-16}{4}\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+2040}{2008}+\frac{x+2040}{2009}+\frac{x+2040}{2011}\)\(+\frac{x+2040}{2012}+\frac{x+2040}{4}=0\)

\(\Leftrightarrow\)\(\left(x+2040\right).\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2040=0\\\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}=0\end{cases}}\)(vô lí)

\(\Leftrightarrow\)\(x=-2040\)

Vậy phương trình có nghiệm là : x = -2040