K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{8x}{x^2-1}\right):\left(\frac{2x-2x^2-6}{x^2-1}-\frac{2}{x-1}\right)\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{8x}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{2x-2x^2-6}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)

\(A=\left(\frac{x^2+2x+1-x^2+2x-1-8x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x-2x^2-6-2x-2}{\left(x+1\right)\left(x-1\right)}\right)\)

\(A=\left(\frac{4x-8x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{-2x^2-8}\)

.......... 

12 tháng 3 2019

\(\frac{x+32}{2008}+\frac{x+31}{2009}+\frac{x+29}{2011}+\frac{x+28}{2012}+\frac{x+2056}{4}=0\) \(=0\)

\(\Leftrightarrow\)\(\frac{x+32}{2008}+1+\frac{x+31}{2009}+1+\frac{x+29}{2011}+1\)\(+\frac{x+28}{2012}+1+\frac{x+2056}{4}-4\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+32}{2008}+\frac{2008}{2008}+\frac{x+31}{2009}+\frac{2009}{2009}+\)\(\frac{x+29}{2011}+\frac{2011}{2011}+\frac{x+28}{2012}+\frac{2012}{2012}+\)\(\frac{x+2056}{4}-\frac{16}{4}\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+32+2008}{2008}+\frac{x+31+2009}{2009}\)\(+\frac{x+29+2011}{2011}+\frac{x+28+2012}{2012}\)\(+\frac{x+2056-16}{4}\)\(=0\)

\(\Leftrightarrow\)\(\frac{x+2040}{2008}+\frac{x+2040}{2009}+\frac{x+2040}{2011}\)\(+\frac{x+2040}{2012}+\frac{x+2040}{4}=0\)

\(\Leftrightarrow\)\(\left(x+2040\right).\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2040=0\\\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}=0\end{cases}}\)(vô lí)

\(\Leftrightarrow\)\(x=-2040\)

Vậy phương trình có nghiệm là : x = -2040

18 tháng 1 2021

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)

Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên

=> 7 ⋮ x - 3

=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn 

Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên

18 tháng 1 2021

(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.

( ác ) là từ ( các ) 

(gia strij) là từ ( giá trị )

25 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)

\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x+4}{x-3}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)

\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)

\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

c) Để \(A=\frac{3}{5}\)

\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)

\(\Leftrightarrow5x+20=3x-9\)

\(\Leftrightarrow2x+29=0\)

\(\Leftrightarrow x=-\frac{29}{2}\)

d) Để \(A< 0\)

\(\Leftrightarrow\frac{x+4}{x-3}< 0\)

\(\Leftrightarrow1+\frac{7}{x-3}< 0\)

\(\Leftrightarrow\frac{-7}{x-3}< 1\)

\(\Leftrightarrow-7< x-3\)

\(\Leftrightarrow x>-4\)

e) Để \(A>0\)

\(\Leftrightarrow\frac{x+4}{x-3}>0\)

\(\Leftrightarrow1+\frac{7}{x-3}>0\)

\(\Leftrightarrow\frac{-7}{x-3}>1\)

\(\Leftrightarrow-7>x-3\)

\(\Leftrightarrow x< -4\)

ai lm hộ mk vs

b1: 

ĐKXĐ: \(x\ne0;x\ne\pm2\)

Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)

\(=\frac{12\left(x-1\right)}{x-2}\)

Vậy ....

Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)

Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0