K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2020

Đặt \(x+2004=t\left(t>2004\right),k=\frac{1}{x+2004}\Rightarrow x=t-2004\)

\(y=\frac{x}{\left(x+2004\right)^2}=\frac{t-2004}{t^2}=\frac{1}{t}-\frac{2004}{t^2}\)

\(\equiv f\left(t\right)=f\left(k\right)=k-2004k^2\)

$=-{\frac { \left( 4008\,k-1 \right) ^{2}}{8016}}+{\frac{1}{8016}} \leqq \frac{1}{8016}$

Đẳng thức xảy ra khi \(k=\frac{1}{4008}\Rightarrow x=2004\)

PS: Đặt màu mè thế thôi chứ xét hiệu $\frac{1}{8016}-y \geqq 0$ là xong ak:v

2 tháng 7 2020

\(\frac{x}{\left(x+2004\right)^2}=\frac{x}{x^2+4008x+2004^2}\)

\(=\frac{1}{x+\frac{2004^2}{x}+4008}\le\frac{1}{2.2004+4008}=\frac{1}{8016}\)

Dấu "=" xảy ra <=> x = 2004

2 tháng 7 2020

another way !

Đặt \(\frac{1}{x+2004}=t\Rightarrow x=\frac{1}{t}-2004\)

Ta có:

\(y=\left(\frac{1}{t}-2004\right).t^2=-2004t^2+t=-2004\left(t^2-2\cdot t\cdot\frac{1}{4008}+\frac{1}{4008^2}\right)+\frac{1}{8016}\)

\(=-2004\left(t-\frac{1}{4008}\right)^2+\frac{1}{8016}\le\frac{1}{8016}\)

Đẳng thức xảy ra tại \(x=2004\)

5 tháng 2 2019

giúp mk đi mà

5 tháng 2 2019

X > 2004

4 tháng 7 2020

Bạn có thể tham khảo ở đây: https://olm.vn/hoi-dap/detail/99503384500.html
Thông tin đến bạn!

8 tháng 6 2016

Em mới học lớp 7

19 tháng 2 2019

a) \(-ĐKXĐ:x\ne\pm2;1\)

Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)

b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)

\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)

Vậy với mọi x thỏa mãn x>1 thì A > 0

c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy x = -1;-2

5 tháng 11 2015

áp dụng bđt cauchy cho 2 số dương, ta có

\(x+y>=2\sqrt{xy}\)

\(x+z>=2\sqrt{xz}\)

\(y+z>=2\sqrt{yz}\)

khi đó \(Q=<\frac{xyz}{2\sqrt{xy}.2\sqrt{xz}.2\sqrt{yz}}\)

 \(Q=<\frac{1}{8}\)

dấu = xảy ra khi và chỉ khi x=y=z

vậy max Q=1/8 khi x=y=z

24 tháng 6 2016

để \(y=\frac{x}{\left(x+2004\right)^2}\) lớn nhất thì \(\frac{\left(x+2004\right)^2}{x}\) phải bé nhất

ta có \(\frac{\left(x+2004\right)^2}{x}=\frac{x^2+2.2004.x+2004^2}{x}\)

                                      \(=\frac{x^2}{x}+\frac{4008x}{x}+\frac{2004^2}{x}\)

                                      \(=4008+x+\frac{2004^2}{x}\)

để \(\frac{\left(x+2004\right)^2}{x}\)bé nhất thì \(4008+x+\frac{2004^2}{x}\)bé nhất 

\(=>x+\frac{2004^2}{x}\)phải bé nhất 

ta thấy \(x.\frac{2004^2}{x}=2004^2\)(tích này không đổi, luôn bằng 2004với mọi giá trị của x)

áp dụng tính chất: nếu 2 số dương có tích không đổi thì tổng của chúng nhỏ nhất khi và chỉ khi 2 số bằng nhau 

ta có : vì tích của x và\(\frac{2004^2}{x}\)không đổi  nên \(x+\frac{2004^2 }{x}\)nhỏ nhất khi và chỉ khi \(x=\frac{2004^2}{x}\)

                                                                                                                                        \(=>2004^2=x^2\)

                                                                                                                                          \(=>x=2004\)

thay x=2004 vào y ta được

\(y=\frac{2004}{\left(2004+2004\right)^2}=\frac{1}{8016}\)

vậy GTLN của \(y=\frac{1}{8016}\) khi và chỉ khi x=2014

9 tháng 1 2020

We have:

\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)

Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)

Dau '=' xay ra khi \(x=y=z=1\)