Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
We have:
\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)
Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)
Dau '=' xay ra khi \(x=y=z=1\)
\(\left(x+y\right)\left(x+z\right)=x^2+xy+xz+yz=x\left(x+y+z\right)+yz\)
\(xyz=\frac{16}{x+y+z}\Rightarrow x+y+z=\frac{16}{xyz}\)
Vậy có:
\(x\left(x+y+z\right)+yz=x.\frac{16}{xyz}+yz\ge2\sqrt{x.\frac{16}{xyz}+yz}=2\sqrt{16}=2.4=8\)
Vậy ........
Từ giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)
Tương tự cho 2 cái còn lại ta có: \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)
\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)
Suy ra \(VT=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Đpcm
Ta có:
\(\frac{x}{1+x^2}+\frac{18y}{1+y^2}+\frac{4z}{1+z^2}=xyz\left(\frac{1}{yz\left(1+x^2\right)}+\frac{18}{xz\left(1+y^2\right)}+\frac{4}{xy\left(1+z^2\right)}\right)\)
\(=xyz\left(\frac{1}{yz+x\left(x+y+z\right)}+\frac{18}{xz+y\left(x+y+z\right)}+\frac{4}{xy+z\left(x+y+z\right)}\right)\)
\(=xyz\left(\frac{1}{\left(x+y\right).\left(x+z\right)}+\frac{18}{\left(y+x\right).\left(y+z\right)}+\frac{4}{\left(z+x\right).\left(z+y\right)}\right)\)
\(=xyz.\frac{\left(z+y\right)+18.\left(x+z\right)+4\left(x+y\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)
\(=\frac{xyz\left(22x+5y+19z\right)}{\left(x+y\right).\left(y+z\right).\left(z+x\right)}\)(đpcm)
áp dụng bđt cauchy cho 2 số dương, ta có
\(x+y>=2\sqrt{xy}\)
\(x+z>=2\sqrt{xz}\)
\(y+z>=2\sqrt{yz}\)
khi đó \(Q=<\frac{xyz}{2\sqrt{xy}.2\sqrt{xz}.2\sqrt{yz}}\)
\(Q=<\frac{1}{8}\)
dấu = xảy ra khi và chỉ khi x=y=z
vậy max Q=1/8 khi x=y=z