K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2024

A = 8 - (4\(x\) - 7)2 

Vì  (4\(x\) - 7)2 ≥ 0 ⇒ - (4\(x\) - 7)2 ≤ 0 ⇒ 8 - (4\(x\) - 7) ≤ 8 

Vậy Amax = 8 xảy ra khi 4\(x\) - 7 = 0 ⇒ \(x\) = \(\dfrac{7}{4}\)

Kết luận giá trị lớn nhất của biểu thức là 8 xảy ra khi \(x\) = \(\dfrac{7}{4}\)

4 tháng 1 2024

Đặt \(A=8-\left(4x-7\right)^2\)

Do \(\left(4x-7\right)^2\ge0\) với mọi \(x\in R\)

\(\Rightarrow-\left(4x-7\right)^2\le0\) với mọi \(x\in R\)

\(\Rightarrow8-\left(4x-7\right)^2\le8\) với mọi \(x\in R\)

Vậy GTLN của A là 8 khi \(x=\dfrac{7}{4}\)

28 tháng 7 2019

\(M=4x-x^2-5\)

\(-M=x^2-4x+5\)

\(-M=x^2-2\cdot2\cdot x+2^2+1\)

\(-M=\left(x-2\right)^2+1\)

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)

\(\Rightarrow-M\ge1\)

\(\Rightarrow M\le1\)

dấu "=" xảy ra khi : 

\(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\) 

22 tháng 5 2017

a ) \(A=-x^2+4x+25=-\left(x^2-4x+4\right)+29=-\left(x-2\right)^2+29\le29\forall x\)

b ) \(B=-x^2-4x+15=-\left(x^2+4x+4\right)+19=-\left(x+2\right)^2+19\le19\forall x\)

c ) \(C=-x^2+10x-17=-\left(x^2-10x+25\right)+8=-\left(x-5\right)^2+8\le8\forall x\)

c ) \(D=-4x^2+4x+9=-\left(4x^2-4x+1\right)+10=-\left(2x-1\right)^2+10\le10\forall x\)

30 tháng 6 2019

\(B=\frac{x^2+17}{x^2+7}\)

\(\Leftrightarrow Bx^2+7B=x^2+17\)

\(\Leftrightarrow Bx^2+7B-x^2-17=0\)

\(\Leftrightarrow x^2\left(B-1\right)+7B-17=0\)

Để pt có nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow0^2-\left(B-1\right)\left(7B-17\right)\ge0\)

\(\Leftrightarrow7B^2-24B+17\le0\)

\(\Leftrightarrow1\le B\le\frac{17}{7}\)

Vậy \(max_B=\frac{17}{7}\Leftrightarrow x=0\)

30 tháng 6 2019

Phuongdeptrai274:e có cách khác a thử check nha!

\(B=\frac{x^2+17}{x^2+7}\)

\(B=\frac{x^2+7+10}{x^2+7}\)

\(B=1+\frac{10}{x^2+7}\)

\(\Rightarrow B\le1+\frac{10}{0+7}=\frac{17}{7}\)

Dấu "=" xảy ra khi x=0

30 tháng 6 2019

\(B=\frac{x^2+17}{x^2+7}=\frac{x^2+7}{x^2+7}+\frac{10}{x^2+7}=1+\frac{10}{x^2+7}\)

để B đạt gtln thì 1/x^2 + 7 lớn nhất

=> x^2 + 7 nhỏ nhất 

mà x^2 + 7 > 7

=> x^2 + 7 = 7

=> x^2 = 0

=> x = 0 

tự thay vào tìm gtln

30 tháng 6 2019

Ta thấy x^2 >= 0 => x^2 + 17 >= 17 ; x^2 + 7 >= 7

=> x^2 + 17/x^2 + 7 >= 17/7

Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0

Vậy với x = 0 ta có GTNN của B là 17/7

Bạn sửa lại đề thành Tìm GTNN nhé 

20 tháng 7 2019

Câu a sai đề nên mik sửa lại nha

a) \(A=2019-\left(3x+8\right)^2\)

Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)

Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)

Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)

b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)

Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)

Vậy ... 

b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)

Vậy ...

\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)

Dấu "=" xảy ra  khi \(2x+1=15=>x=7\)

Vậy ...

\(a,A=2019-\left(3x+8\right)\)

GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)

\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)

GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)

\(a,A=\left(6x-1\right)^2+2018\ge2018\)

Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)

Vậy GTNN của A là 2018 khi x = 1/6

B ko hiểu 

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lời giải:

Ta có:

\(M=4x-x^2-5=-1-(x^2-4x+4)=-1-(x-2)^2\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $M=-1-(x-2)^2\leq -1$

Vậy GTLN của $M$ là $-1$ khi $(x-2)^2=0\Leftrightarrow x=2$

5 tháng 4 2020

Bài 1 :

a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

b) Ta thấy : \(B=x^2+4x-100\)

\(=\left(x+4\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy \(Min_B=-104\Leftrightarrow x=-4\)

c) Ta thấy : \(C=\frac{4-x}{x-3}\)

\(=\frac{3-x+1}{x-3}\)

\(=-1+\frac{1}{x-3}\)

Để C min \(\Leftrightarrow\frac{1}{x-3}\)min

\(\Leftrightarrow x-3\)max

\(\Leftrightarrow x\)max

Vậy để C min \(\Leftrightarrow\)\(x\)max

p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình

Bài 2 : 

a) Ta thấy : \(x^2\ge0\)

                  \(\left|y+1\right|\ge0\)

\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)

\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)

b) Để B max

\(\Leftrightarrow\left(x+3\right)^2+2\)min

Ta thấy : \(\left(x+3\right)^2\ge0\)

\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)

c) Ta thấy : \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow x^2+2x+1\ge0\)

\(\Leftrightarrow-x^2-2x-1\le0\)

\(\Leftrightarrow C=-x^2-2x+7\le8\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(Max_C=8\Leftrightarrow x=-1\)

13 tháng 7 2018

\(A=-\left|2x-3\right|+5\)

Ta có: \(\left|2x-3\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-3\right|\le0\forall x\)

\(\Rightarrow-\left|2x-3\right|+5\le5\forall x\)

\(A=5\Leftrightarrow-\left|2x-3\right|=0\Leftrightarrow x=\frac{3}{2}\)

Vậy \(A_{m\text{ax}}=5\Leftrightarrow x=\frac{3}{2}\) 

\(B=8-\left(x+1\right)^2\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow8-\left(x+1\right)^2\le8\forall x\)

\(B=8\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy \(A_{m\text{ax}}=8\Leftrightarrow x=-1\)

13 tháng 7 2018

Các bn ơi giúp mk vs