K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lời giải:

Ta có:

\(M=4x-x^2-5=-1-(x^2-4x+4)=-1-(x-2)^2\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $M=-1-(x-2)^2\leq -1$

Vậy GTLN của $M$ là $-1$ khi $(x-2)^2=0\Leftrightarrow x=2$

28 tháng 7 2019

\(M=4x-x^2-5\)

\(-M=x^2-4x+5\)

\(-M=x^2-2\cdot2\cdot x+2^2+1\)

\(-M=\left(x-2\right)^2+1\)

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)

\(\Rightarrow-M\ge1\)

\(\Rightarrow M\le1\)

dấu "=" xảy ra khi : 

\(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\) 

22 tháng 5 2017

a ) \(A=-x^2+4x+25=-\left(x^2-4x+4\right)+29=-\left(x-2\right)^2+29\le29\forall x\)

b ) \(B=-x^2-4x+15=-\left(x^2+4x+4\right)+19=-\left(x+2\right)^2+19\le19\forall x\)

c ) \(C=-x^2+10x-17=-\left(x^2-10x+25\right)+8=-\left(x-5\right)^2+8\le8\forall x\)

c ) \(D=-4x^2+4x+9=-\left(4x^2-4x+1\right)+10=-\left(2x-1\right)^2+10\le10\forall x\)

Bài  1 :

a) Vì ( x + 1 )2 ≥ 0 ∀ x

=> M = ( x + 1 )2 - 3 ≥ -3

Dấu "=" xảy ra <=> ( x + 1 )2 = 0

<=> x + 1 = 0 <=> x = -1

b) Vì ( y + 3 )2 ≥ 0 ∀ x

=> N = 5 - ( y + 3 )2 ≥ 5

Dấu "=" xảy ra <=> ( y + 3 )2 = 0

<=> y  + 3 = 0 <=> y = -3

27 tháng 9 2021

tim tim undefined

13 tháng 4 2021

M = -x2 - 8x + 5 

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Dấu "=" xảy ra <=> x = -4

Vậy MaxM = 21

11 tháng 5 2021

\(M=-x^2-8x\)\(+5\)

\(=-x^2-8x-16+21\)

\(=-\left(x^2+8x+16\right)+21\)

\(=-\left(x+4\right)^2+21\)

Vì \(\left(x+4\right)^2\ge0\)

\(\Rightarrow-\left(x+4\right)^2\le0\)

\(\Rightarrow M=-\left(x+4\right)^2+21\le21\)

Dấu " = " xảy ra \(\Leftrightarrow\) \(\left(x+4\right)^2=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy GTLN của M = 21 khi x = - 4

5 tháng 4 2020

Bài 1 :

a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

b) Ta thấy : \(B=x^2+4x-100\)

\(=\left(x+4\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy \(Min_B=-104\Leftrightarrow x=-4\)

c) Ta thấy : \(C=\frac{4-x}{x-3}\)

\(=\frac{3-x+1}{x-3}\)

\(=-1+\frac{1}{x-3}\)

Để C min \(\Leftrightarrow\frac{1}{x-3}\)min

\(\Leftrightarrow x-3\)max

\(\Leftrightarrow x\)max

Vậy để C min \(\Leftrightarrow\)\(x\)max

p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình

Bài 2 : 

a) Ta thấy : \(x^2\ge0\)

                  \(\left|y+1\right|\ge0\)

\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)

\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)

b) Để B max

\(\Leftrightarrow\left(x+3\right)^2+2\)min

Ta thấy : \(\left(x+3\right)^2\ge0\)

\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)

c) Ta thấy : \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow x^2+2x+1\ge0\)

\(\Leftrightarrow-x^2-2x-1\le0\)

\(\Leftrightarrow C=-x^2-2x+7\le8\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(Max_C=8\Leftrightarrow x=-1\)

9 tháng 10 2018

\(E=5-3\left(x+1\right)^2\le5\forall x\) ( tự suy luận mũ chẵn )

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy maxE = 5 <=> x = -1

5 tháng 4 2017

a. (x+2)2 >= 0

(y-1/5)2 >= 0

=> MinC = -10 khi x = -2, y = 1/5

b. (2x-3)2 + 5 >= 5

D đạt max khi mẫu đạt min (Mẫu > 0)

=> MaxD = 4/5 khi x = 3/2