Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách 2
\(Pain=\left(\sqrt{2x+1}-\sqrt{\frac{16}{2x+1}}\right)^2\ge0\)
\(=2x+1-\frac{16}{2x+1}-2\sqrt{\frac{\left(2x+1\right)16}{\left(2x+1\right)}}\ge0\)
\(=\frac{\left(2x+1\right)^2+16}{2x+1}\ge8\)
\(a=\frac{2x+1}{4x^2+4x+17}=\frac{2x+1}{\left(2x+1\right)^2+16}\ge\frac{1}{8}\)
\(4x^2A+4xa+17a=2x+1.\)
\(4x^2A+2x\left(2a-1\right)+\left(17a-1\right)=0\)
để pt có nghiệm thì \(\Delta`=\left(2a-1\right)^2-4a\left(17a-1\right)\ge0\)
\(\Delta`=\left(1-8a\right)\left(8a+1\right)\ge0\)
\(1-8a\ge0\Leftrightarrow a\le\frac{1}{8}\) " max
\(8a+1\ge0\Leftrightarrow a\ge-\frac{1}{8}\) Min
\(\frac{1}{8}\ge a\ge-\frac{1}{8}\)
tìm hộ lỗi sai :)) , chia sẻ luôn cách tìm min max pt dạng như trên
công thức tổng quát nè
\(M=\frac{ax^2+bx+C}{ex^2+fx+g}\)
\(ex^2M+fxM+gM=ax^2+bx+c\)
\(x^2\left(e-a\right)+x\left(fm-b\right)+\left(gm-c\right)=0\)
\(\Delta=\left(fm-b\right)^2-4\left(gm-c\right)\left(e-a\right)\ge0\)
pt bậc 2 ẩn M , tính denta ra nghiệm rồi phân thích thành nhân tử là ok
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)
dau '=' xay ra khi \(x=\frac{3}{2}\)
\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)
dau '=' xay ra khi \(x=1\)
a ) \(A=x^2-4x-7\)
\(A=\left(x^2+2.x.2+2^2\right)-11\)
\(A=\left(x+2\right)^2-11\)
Ta có : \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2-11\ge-11\)
Vậy GTNN của \(A=-11\)
Khi : \(x+2=0\)
\(x=-2\)
b ) \(B=-x^2+4x-7\)
\(B=-\left(x^2+2.x.2-2^2\right)-3\)
\(B=-\left(x-2\right)^2-3\)
Ta có : \(-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2-3\le-3\)
Vậy GTLN của \(B=-3\)
Khi \(x-2=0\)
\(x=2\)
a)
\(A=\left(x^2-4x+4\right)-11\)
\(=\left(x-2\right)^2-11\)
Ta có
\(\left(x-2\right)^2-11\ge-11\)
Dấu " = " xảy ra khi x = 2
Vậy MINA= - 11 khi x=2
b)
\(B=-\left(x^2-4x+4\right)-3\)
\(B=-\left(x-2\right)^2-3\)
Ta có
\(-\left(x-2\right)^2-3\le-3\) với mọi x
Dấu " = " xảy ra khi = 2
Vậy MAXB= - 3 khi x = 2
ĐKXĐ x thuộc R
ta thấy x^2 +1 >=0
=> \(\frac{3-4x}{x^2+1}\)>=0
dấu bằng xảy ra khi và chỉa khi
3 -4x =0
=> 4x = 3
=> x = \(\frac{3}{4}\)
vậy MINA = 0 tại x = \(\frac{3}{4}\)
a)
A=\(x^2+4x+7\)
=\(x^2+4x+4+3\)
=\(\left(x+2\right)^2+3\)
Do (x+2)2\(\ge0\)\(\Rightarrow\left(x+2\right)^2\ge3\)
Dấu ''='' xảy ra khi
\(x+2=0\Rightarrow x=-2\)
Vậy GTNN của A là A=3 tại x=-2
B=\(x^2+4x-7\)
=\(\left(x^2+4x+4\right)-11\)
=\(\left(x+2\right)^2-11\)
Do (x+2)2\(\ge0\Rightarrow\left(x+2\right)^2-11\ge-11\)
Dấu''='' xảy ra khi
\(x+2=0\Rightarrow x=-2\)
Vậy GTNN Của B là B=-11 với x=-2
b) M=\(7-4x-x^2\)
=\(-\left(7+4x+x^2\right)\)
=\(-\left(3+\left(x+2\right)^2\right)\)
=-\(\left(x+2\right)^2-3\)
Do \(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\Rightarrow-\left(x+2\right)^2-3\le-3\)
Dấu = xảy ra khi
\(x+2=0\Rightarrow x=2\)
Vậy GTNN Của M là M min =-3 tại x=2
\(A=\frac{x^2+4x+7+12}{x^2+4x+7}=1+\frac{12}{x^2+4x+7}=1+\frac{12}{x^2+4x+4+3}=1+\frac{12}{\left(x+2\right)^2+3}\)
Có A lớn nhất khi 12/x^2+4x+7 lớn nhất
Vì (x+2)2 >=0 ⇒ (x+2)2 +3 >=3 với mọi x
Vậy 12/(x+2)2+3 lớn nhất khi (x+2)2+3 nhỏ nhất
⇒ (x+2)2+3 có giá trị nhỏ nhất ⇔ x+2=0⇔x=-2
Nên A có giá trị lớn nhất khi x=-2
khi đó: A= 1+12/(-2+2)2+3=5
Hay A có giá trị lớn nhất là 5 khi x=-2