Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)
\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)
b) \(18A=1\)
<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))
<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)
<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32
<=> 18x2 - 72x + 90 = x3 + 6x2 - 32
<=> x3 + 6x2 - 32 - 18x2 + 72x - 90 = 0
<=> x3 - 12x2 + 72x - 122 = 0
Rồi đến đây chịu á :)
\(P=-\left(4x^2-4x+1+x+\frac{1}{4x}-2015\right)\)
\(=-\left[\left(2x-1\right)^2+\frac{\left(2x-1\right)^2}{4x}\right]+2014\)
\(P\le2014\forall x>0\)
Dấu "=" xảy ra <=> x=\(\frac{1}{2}\)
Viết B dưới dạng \(8x+2+\frac{1}{2x}\). Hai số \(8x\) và \(\frac{1}{2x}\) là hai số dương , có tích không đổi ( bằng 4 ) nên tổng của chúng nhỏ nhất khi và chỉ khi :
\(8x=\frac{1}{2x}\Leftrightarrow16x^2=1\Leftrightarrow x=\frac{1}{4}\left(x>0\right)\)
Vậy \(Min_B=\frac{1+1+1}{\frac{1}{2}}=6\Leftrightarrow x=\frac{1}{4}.\)
a, N = 2 + 6/x^2-8x+22
Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy Max N =3 <=> x=4
k mk nha
Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !
cách 2
\(Pain=\left(\sqrt{2x+1}-\sqrt{\frac{16}{2x+1}}\right)^2\ge0\)
\(=2x+1-\frac{16}{2x+1}-2\sqrt{\frac{\left(2x+1\right)16}{\left(2x+1\right)}}\ge0\)
\(=\frac{\left(2x+1\right)^2+16}{2x+1}\ge8\)
\(a=\frac{2x+1}{4x^2+4x+17}=\frac{2x+1}{\left(2x+1\right)^2+16}\ge\frac{1}{8}\)
\(4x^2A+4xa+17a=2x+1.\)
\(4x^2A+2x\left(2a-1\right)+\left(17a-1\right)=0\)
để pt có nghiệm thì \(\Delta`=\left(2a-1\right)^2-4a\left(17a-1\right)\ge0\)
\(\Delta`=\left(1-8a\right)\left(8a+1\right)\ge0\)
\(1-8a\ge0\Leftrightarrow a\le\frac{1}{8}\) " max
\(8a+1\ge0\Leftrightarrow a\ge-\frac{1}{8}\) Min
\(\frac{1}{8}\ge a\ge-\frac{1}{8}\)
tìm hộ lỗi sai :)) , chia sẻ luôn cách tìm min max pt dạng như trên
công thức tổng quát nè
\(M=\frac{ax^2+bx+C}{ex^2+fx+g}\)
\(ex^2M+fxM+gM=ax^2+bx+c\)
\(x^2\left(e-a\right)+x\left(fm-b\right)+\left(gm-c\right)=0\)
\(\Delta=\left(fm-b\right)^2-4\left(gm-c\right)\left(e-a\right)\ge0\)
pt bậc 2 ẩn M , tính denta ra nghiệm rồi phân thích thành nhân tử là ok