Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x^2-16x+43}{x^2-8x+22}\Leftrightarrow Ax^2-8Ax+22A-2x^2+16x-43=0\)
\(\Leftrightarrow x^2\left(A-2\right)-x\left(8A-16\right)+22A-43=0\)
\(\Delta=\left[-\left(8A-16\right)\right]^2-4\left(A-2\right)\left(22A-43\right)\)
\(=-24A^2+92A-88\). \(\Delta\) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-24A^2+92A-88\ge0\)\(\Leftrightarrow6A^2-23A+22\le0\)
\(\Leftrightarrow\left(A-2\right)\left(6A-11\right)\le0\)\(\Rightarrow\frac{11}{6}\le A\le2\)
Ta có \(A=\frac{2x^2-16x+43}{x^2-8x+22}\)
\(\Leftrightarrow\frac{2x^2-16x+44-1}{x^2-8x+22}=\frac{2x^2-16x+44}{x^2-8x+22}-\frac{1}{x^2-8x+22}\)
\(\Leftrightarrow\frac{2.\left(x^2-8x+22\right)}{x^2-8x+22}-\frac{1}{x^2-8x+22}=2-\frac{1}{x^2-8x+22}\)
Muốn A có gtnn thì \(\frac{1}{x^2-8x+22}\)Phải lớn nhất
Suy Ra \(x^2-8x+22\)Phải nhỏ nhất
\(\Leftrightarrow x^2-8x+22=x^2-8x+16+6=\left(x-4\right)^2+6\)
Vậy GTNN của \(x^2-8x+22\)Là 6
Suy Ra GTLN của \(\frac{1}{x^2-8x+22}\) Là \(\frac{1}{6}\)
Vậy GTNN của \(A=2-\frac{1}{6}=\frac{11}{6}\)Khi x-4=0 => x=4
A = 2.(x^2-8x+22)-1/x^2-8x+22 = 2 - 1/x^2-8x+22
Có : x^2-8x+22 = (x^2-8x+16)+6 = (x-4)^2+6 >= 6 => 1/x^2-8x+22 < = 1/6
=> A = 2 - 1/x^2-8x+22 >= 2-1/6 = 11/6
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy GTNN của A = 11/6 <=> x=4
k mk nha
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
a: \(=\dfrac{2x^2-16x+44+6}{x^2-8x+22}=2+\dfrac{6}{x^2-8x+22}\)
\(=2+\dfrac{6}{\left(x-4\right)^2+6}\)
(x-4)^2+6>=6
=>6/(x-4)^2+6<=1
=>A<=3
Dấu = xảy ra khi x=4
b: \(B=\dfrac{5x^2+4x-1}{x^2}=\dfrac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\dfrac{\left(2x-1\right)^2}{x^2}< =9\)
Dấu = xảy ra khi x=1/2
a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)
Ta thấy \(x^2\ge0\forall x\)
=> \(x^2+4\ge4\forall x\)
=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)
=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)
\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)
a, N = 2 + 6/x^2-8x+22
Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy Max N =3 <=> x=4
k mk nha
Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !