Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{3}{x^2+4x+5}\)
\(\Rightarrow\)A lớn nhất thì \(x^2+4x+5\)nhỏ nhất =1
Vậy GTLN của A= 3 với x =-2.
\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)
dau '=' xay ra khi \(x=\frac{3}{2}\)
\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)
dau '=' xay ra khi \(x=1\)
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
cách 2
\(Pain=\left(\sqrt{2x+1}-\sqrt{\frac{16}{2x+1}}\right)^2\ge0\)
\(=2x+1-\frac{16}{2x+1}-2\sqrt{\frac{\left(2x+1\right)16}{\left(2x+1\right)}}\ge0\)
\(=\frac{\left(2x+1\right)^2+16}{2x+1}\ge8\)
\(a=\frac{2x+1}{4x^2+4x+17}=\frac{2x+1}{\left(2x+1\right)^2+16}\ge\frac{1}{8}\)
\(4x^2A+4xa+17a=2x+1.\)
\(4x^2A+2x\left(2a-1\right)+\left(17a-1\right)=0\)
để pt có nghiệm thì \(\Delta`=\left(2a-1\right)^2-4a\left(17a-1\right)\ge0\)
\(\Delta`=\left(1-8a\right)\left(8a+1\right)\ge0\)
\(1-8a\ge0\Leftrightarrow a\le\frac{1}{8}\) " max
\(8a+1\ge0\Leftrightarrow a\ge-\frac{1}{8}\) Min
\(\frac{1}{8}\ge a\ge-\frac{1}{8}\)
tìm hộ lỗi sai :)) , chia sẻ luôn cách tìm min max pt dạng như trên
công thức tổng quát nè
\(M=\frac{ax^2+bx+C}{ex^2+fx+g}\)
\(ex^2M+fxM+gM=ax^2+bx+c\)
\(x^2\left(e-a\right)+x\left(fm-b\right)+\left(gm-c\right)=0\)
\(\Delta=\left(fm-b\right)^2-4\left(gm-c\right)\left(e-a\right)\ge0\)
pt bậc 2 ẩn M , tính denta ra nghiệm rồi phân thích thành nhân tử là ok
Băng Băng 2k6: P2 m làm là miền giá trị của lớp 9, lớp 8 chưa học Delta nên không dùng được nhé!
Đơn giản lắm!
Tìm min A:
\(A=\frac{4x+1}{4x^2+2}=\frac{\left(x+1\right)^2}{2x^2+1}-\frac{1}{2}\ge-\frac{1}{2}\)
Đẳng thức xảy ra khi \(x=-1\)
Tìm max A:
\(A=\frac{4x+1}{4x^2+2}=-\frac{\left(2x-1\right)^2}{2\left(2x^2+1\right)}+1\le1\)
Đẳng thức xảy ra khi \(x=\frac{1}{2}\)
Vậy....
----------------------------------------------------------------------------------------------------
Tìm min B:
\(B=\frac{4x+5}{x^2+2x+6}=\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}-\frac{4}{5}\ge-\frac{4}{5}\)
Đẳng thức xảy ra khi \(x=-\frac{7}{2}\)
Tìm max B:
\(B=\frac{4x+5}{x^2+2x+6}=-\frac{\left(x-1\right)^2}{x^2+2x+6}+1\le1\)
Đẳng thức xảy ra khi \(x=1\)
Vậy...
ĐKXĐ x thuộc R
ta thấy x^2 +1 >=0
=> \(\frac{3-4x}{x^2+1}\)>=0
dấu bằng xảy ra khi và chỉa khi
3 -4x =0
=> 4x = 3
=> x = \(\frac{3}{4}\)
vậy MINA = 0 tại x = \(\frac{3}{4}\)
\(A=\frac{1}{x^2+4x+5}=\frac{1}{\left(x+2\right)^2+1}\)
Vì: \(\left(x+2\right)^2\ge0\)
=> \(\left(x+2\right)^2+1\ge1\)
=> \(\frac{1}{\left(x+2\right)^2+1}\le\frac{1}{1}=1\)
Vậy GTLN của A là 1 khi x=-2