Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(x^2-6xy+9y^2\right)+\left(x^2-2x+1\right)+2017=\left(x-3y\right)^2+\left(x-1\right)^2+2017\)
\(\ge0+0+2017=2017.\Rightarrow C_{min}=2017\Leftrightarrow\hept{\begin{cases}x-1=0\\x-3y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
a) \(x^2y+2xy+y=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)
b) \(4x^2-4xy-6y^2+6xy=4x\left(x-y\right)+6y\left(x-y\right)=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
c) \(18x^5y+18x^3y-2x^3y^5-2xy^5=18x^3y\left(x^2+1\right)-2xy^5\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(18x^3y-2xy^5\right)=2xy\left(x^2+1\right)\left(9x^2-y^4\right)=2xy\left(x^2+1\right)\left(3x-y^2\right)\left(3x+y^2\right)\)
d)
d) \(-12x^5-12x^3y-3xy^2+36x^4+36x^2y+9y^2=-3x\left(4x^4+4x^2y+y^2\right)+9y\left(4x^4+4x^2y+y^2\right)\)\(=\left(4x^4+4x^2y+y^2\right)\left(9-3x\right)\)
a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)
\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)
\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)
\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)
Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)
Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)
b) \(B=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)
\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)
\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)
Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3
Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)
a,Đặt A= \(2x^2+2xy+y^2-2x+2y+15\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)+10\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2+10\)
Vì \(\left(x+y+1\right)^2\ge0;\left(x-2\right)^2\ge0\Rightarrow\left(x+y+1\right)^2+\left(x-2\right)^2+10\ge0\)
hay \(A\ge10\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy min A=10 khi x=2; y=-3
b/ \(=\left(x^2-2xy+y^2\right)+\left(3x^2-12x+12\right)+\left(8y^2-32y+32\right)-4\)
=\(\left(x-y\right)^2+3\left(x-2\right)^2+8\left(y-2\right)^2-4\ge-4\)
Vậy Min =-4 khi x=y=2
A=\(\left(x-y\right)^2-2.6.\left(x-y\right)+36+5y^2+10y+5+4\)
=\(\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Dấu bằng xảy ra khi y=1 và x=5
2B=\(2x^2+2y^2-2xy-2x+2y+2\)
=\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
=>B\(\ge\)0
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
\(a,A=2x^2+9y^2-6xy-6x-12y+2049\)
\(=x^2-6xy+9y^2+x^2-10x+25+4x-12y+2024\)
\(=\left(x-3y\right)^2+\left(x-5\right)^2+4\left(x-3y\right)+2024\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+2020\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\)
\(A_{min}=2020\Leftrightarrow\hept{\begin{cases}\left(x-3y+2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x=5\end{cases}\Rightarrow5-3y+2=0}\)
\(\Rightarrow3y=7\Leftrightarrow y=\frac{7}{3}\)
Vậy \(A_{min}=2020\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)
b tương tự nhé
\(C=2x^2+9y^2-6xy-2x+2018\)
\(=\left(x^2-6xy+9y^2\right)+\left(x^2-2x+1\right)+2017\)
\(=\left(x-3y\right)^2+\left(x-1\right)^2+2017\)
Nhận xét :
\(\left\{{}\begin{matrix}\left(x-3y\right)^2\ge0\\\left(x-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-1\right)^2+2017\ge2017\)
\(\Leftrightarrow C\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3y\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(C_{Min}=2017\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(D=x^2-2xy+6y^2-12x+2y+45\)
\(=\left(x^2-2xy+y^2\right)-\left(12x+12y\right)-10y+5y^2+45\)
\(=\left(x-y\right)^2-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Nhận xét :
\(\left\{{}\begin{matrix}\left(x-y-6\right)^2\ge0\\5\left(y-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-y-6\right)+5\left(y-1\right)^2+4\ge4\)
\(\Leftrightarrow D\ge4\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Vậy \(D_{Min}=4\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)