Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
a) 6x2.(3x2 - 4x + 5) = 18x4 - 24x3 + 30x2
b) (x - 2y)(3xy + 6y2 + x) = 3x2y + 6xy2 + x2 - 6xy2 - 12y3 - 2xy = -12y3 + 3x2y - 2xy + x2
c) (18x4y3 - 24x3y4 + 12x3y3) : (-6x2y3) = -6x2y3(-3x2 + 4xy - 2x) : (-6x2y3) = 4xy - 3x2 - 2x
WTF đăng một loạt vầy ai dám làm @@
Mấy bài này trong sách bài tập cx có bài mẫu
tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết
a) \(12x^5y+24x^4y^2+12x^3y^3\)
\(=12x^3y\left(x^2+2xy+y^2\right)\)
\(=12x^3y\left(x+y\right)^2\)
b) \(x^2-2xy-4+y^2\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
g) \(12xy-12xz+3x^2y-3x^2z\)
\(=12x\left(y-z\right)+3x^2\left(y-z\right)\)
\(=3x\left(4+x\right)\left(y-z\right)\)
e) \(16x^2-9\left(x^2+2xy+y^2\right)\)
\(=\left(4x\right)^2-\left[3\left(x+y\right)\right]^2\)
\(=\left(4x-3\left(x+y\right)\right)\left(4x+3\left(x+y\right)\right)\)
\(=\left(x+y\right)\left(7x+y\right)\)
d) làm tương tự như phần g chỉ khác là phải nhóm( nhóm xen kẽ), phần f cũng vậy
a) \(8a^2xy-18b^2xy=2xy\left(4a^2-9b^2\right)=2xy\left(2a-3b\right)\left(2a+3b\right)\)
b) \(32a^2b^2-4=4\left(8a^2b^2-1\right)\)
c) \(x^2-49z^2-4xy+4y^2=\left(x^2-4xy+4y^2\right)-49z^2\)
\(=\left(x-2y\right)^2-\left(7z\right)^2=\left(x-2y+7z\right)\left(x-2y-7z\right)\)
d) \(3x^2+6x+3-3y^2=3\left(x^2+2x+1-y^2\right)=3.\left[\left(x+1\right)^2-y^2\right]\)
\(=3\left(x-y+1\right)\left(x+y+1\right)\)
e) \(12x^2y-12y^3+36xy+27y=3y\left(4x^2-4y^2+12x+9\right)\)
\(=3y\left[\left(4x^2+12x+9\right)-4y^2\right]=3y\left[\left(2x+3\right)^2-\left(2y\right)^2\right]\)
\(=3y\left(2x-2y+3\right)\left(2x+2y+3\right)\)
a) 8a2xy - 18b2xy
= 2xy( 4a2 - 9b2 )
= 2xy( [ ( 2a )2 - ( 3b )2 ]
= 2xy( 2a - 3b )( 2a + 3b )
b) 32a2b2 - 4
= 4( 8a2b2 - 1 )
c) x2 - 49z2 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 49z2
= ( x - 2y )2 - ( 7z )2
= ( x - 2y - 7z )( x - 2y + 7z )
d) 3x2 + 6x + 3 - 3y2
= 3( x2 + 2x + 1 - y2 )
= 3[ ( x2 + 2x + 1 ) - y2 ]
= 3[ ( x + 1 )2 - y2 ]
= 3( x - y + 1 )( x + y + 1 )
e) 12x2y - 12y3 + 36xy + 27y
= 3y( 4x2 - 4y2 + 12x + 9 )
= 3y[ ( 4x2 + 12x + 9 ) - 4y2 ]
= 3y[ ( 2x + 3 )2 - ( 2y )2 ]
= 3y( 2x - 2y + 3 )( 2x + 2y + 3 )
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
a) \(x^2y+2xy+y=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)
b) \(4x^2-4xy-6y^2+6xy=4x\left(x-y\right)+6y\left(x-y\right)=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
c) \(18x^5y+18x^3y-2x^3y^5-2xy^5=18x^3y\left(x^2+1\right)-2xy^5\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(18x^3y-2xy^5\right)=2xy\left(x^2+1\right)\left(9x^2-y^4\right)=2xy\left(x^2+1\right)\left(3x-y^2\right)\left(3x+y^2\right)\)
d)
d) \(-12x^5-12x^3y-3xy^2+36x^4+36x^2y+9y^2=-3x\left(4x^4+4x^2y+y^2\right)+9y\left(4x^4+4x^2y+y^2\right)\)\(=\left(4x^4+4x^2y+y^2\right)\left(9-3x\right)\)