K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
T
7 tháng 8 2016
kí hiệu a l b là a chia hết cho b nhé
xy-1 l (x-1)(y-1) <=> xy-1 l y-1 <=> y(x-1)+y-1 l y-1 => x-1 l y-1
tương tự : y-1 l x-1
=> \(\orbr{\begin{cases}x-1=y-1\\x-1=1-y\end{cases}}\Rightarrow\orbr{\begin{cases}x=y\\x+y=2\end{cases}}\)
+> x=y \(\Rightarrow x^2-1\)l \(\left(x-1\right)^2\) <=> x+1 l x-1 <=> 2 l x-1 => x=2 hoặc x=3
|+> x+y=2 thay vào tương tự như trên nhé
OK
0
a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)
\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)
\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)
\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)
Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)
Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)
b) \(B=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)
\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)
\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)
Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3
Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)
pn ơi , giải thích hộ t câu a vs, t k hiểu rõ lắm