K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

Giá trị nhỏ nhất của a là -2016 tại x=-2016

1 tháng 10 2018

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)

\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)

\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)

\(\Leftrightarrow\)\(x=2016\)

Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)

Chúc bạn học tốt ~ 

18 tháng 12 2016

a, \(\left|x-2016\right|+\left|x+2017\right|=\left|2016-x\right|+\left|x+2017\right|\)

\(\ge\left|2016-x+x+2017\right|=4033\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2016-x\right)\left(x+2017\right)\ge0\)

Bạn tự giải nốt nhé!

b. Ta có : \(\left(x+5\right)^2\ge0\) với mọi x
\(\Leftrightarrow\left(x+5\right)^2+2016\ge2016\) với mọi x
\(\Leftrightarrow\frac{1}{\left(x+5\right)^2+2016}\le\frac{1}{2016}\) với mọi x
\(\Leftrightarrow\frac{3}{\left(x+5\right)^2+2016}\le\frac{3}{2016}=\frac{1}{672}\) với mọi x

Dấu "=" xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)

Bạn tự kết luận nha :)

6 tháng 10 2018

a) Để \(2018+\sqrt{2018-x}\)  thì \(\sqrt{2018-x}\ge0\Leftrightarrow x\le2018\)

b) Để A đạt giá trị nhỏ nhất thì \(\sqrt{2018-x}\) nhỏ nhất. Mà \(\sqrt{2018-x}\ge0\) nên

\(A=2018+\sqrt{2018-x}\ge2018\)

Vậy \(A_{min}=2018\Leftrightarrow\sqrt{2018-x}=0\Leftrightarrow x=2018\)

28 tháng 10 2016

a) Để A có nghĩa thì \(2003-x\ge0\Rightarrow x\le2003\)

b) Có: \(\sqrt{2003-x}\ge0\forall x\le2003\)

\(\Rightarrow A=2004+\sqrt{2003-x}\ge2004\forall x\le2003\)

Dấu ''=" xảy ra khi \(\sqrt{2003-x}=0\)

\(\Leftrightarrow2003-x=0\Leftrightarrow x=2003\)

Vậy với x = 2003 thì A đạt GTNN là 2004

1 tháng 11 2018

\(B=\left|x+2016\right|+\left|2017-x\right|+\left|x-2018\right|\)

Vì :

\(\left|x+2016\right|\ge x+2016\forall x\)

\(\left|2017-x\right|\ge2017-x\forall x\)

\(\left|x-2018\right|\ge0\forall x\)

\(\Leftrightarrow B\ge x+2016+2017-x+0=4033\)

Dấu "=" xảy ra \(\Leftrightarrow2017-x=0\Leftrightarrow x=2017\)

Vậy Bmin = 4033 khi và chỉ khi x = 2017

1 tháng 11 2018

Cho sửa :v

\(B=\left|x+2016\right|+\left|2017-x\right|+\left|x-2018\right|\)

\(B=\left|x+2016\right|+\left|x-2017\right|+\left|2018-x\right|\)

Vì \(\hept{\begin{cases}\left|x+2016\right|\ge x+2016\forall x\\\left|x-2017\right|\ge0\forall x\\\left|2018-x\right|\ge2018-x\forall x\end{cases}}\)

\(\Rightarrow B\ge x+2016+0+2018-x=4034\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2017=0\Leftrightarrow x=2017\)

Vậy Bmin = 4034 khi và chỉ khi x = 2017