Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\sqrt{x}\ge0\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}+0=\frac{1}{2}\Rightarrow P_{min}=\frac{1}{2}\) khi và chỉ khi \(\sqrt{x}=0\Rightarrow x=0\)
b) Ta có:
\(2.\sqrt{x-1}\ge0\Rightarrow7-2.\sqrt{x-1}\le7-2.0=7\Rightarrow Q_{max}=7\)khi và chỉ khi \(2.\sqrt{x-1}=0\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
\(B=\left|x+2016\right|+\left|2017-x\right|+\left|x-2018\right|\)
Vì :
\(\left|x+2016\right|\ge x+2016\forall x\)
\(\left|2017-x\right|\ge2017-x\forall x\)
\(\left|x-2018\right|\ge0\forall x\)
\(\Leftrightarrow B\ge x+2016+2017-x+0=4033\)
Dấu "=" xảy ra \(\Leftrightarrow2017-x=0\Leftrightarrow x=2017\)
Vậy Bmin = 4033 khi và chỉ khi x = 2017
Cho sửa :v
\(B=\left|x+2016\right|+\left|2017-x\right|+\left|x-2018\right|\)
\(B=\left|x+2016\right|+\left|x-2017\right|+\left|2018-x\right|\)
Vì \(\hept{\begin{cases}\left|x+2016\right|\ge x+2016\forall x\\\left|x-2017\right|\ge0\forall x\\\left|2018-x\right|\ge2018-x\forall x\end{cases}}\)
\(\Rightarrow B\ge x+2016+0+2018-x=4034\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2017=0\Leftrightarrow x=2017\)
Vậy Bmin = 4034 khi và chỉ khi x = 2017
A=\(|\)2017 -x \(|\)+ \(|\)x-2016 |
Ta có: \(\left|2017-x\right|\ge2017-x\forall x\)(1)
Dấu "=" xảy ra khi:
\(2017-x\ge0\)
\(\Rightarrow-x\ge-2017\)
\(\Rightarrow x\le2017\)
Lại có:\(\left|x-2016\right|\ge x-2016\forall x\)(2)
Dấu "=" xảy ra khi:
\(x-2016\ge0\)
\(\Rightarrow x\ge2016\)
Từ (1) và (2) \(\Rightarrow\left|2017-x\right|+\left| x-2016\right|\ge2017-x+x-2016\)
\(\Rightarrow A\ge\left(2017-2016\right)-\left(x-x\right)\)
\(\Rightarrow A\ge1\)
Ta thấy A=1 khi \(\hept{\begin{cases}x\le2017\\x\ge2016\end{cases}\Rightarrow2016\le x\le2017}\)
Vậy GTNN của A là 1 khi \(2016\le x\le2017\)
a)<=>A>hoặc=|x-2016+2015-x| <=>A>hoặc= 1 với mọi x
=>Amin=1 khi (x-2016).(2015-x)>hoặc =0
=>2015<hoặc=x<hoặc=2016