Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất
\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
dấu = xảy ra khi |x-2016|=0
=> x=2016
Vậy Min A=\(\frac{2017}{2018}\)khi x=2016
ps: sai sót bỏ qua
Tìm giá trị nhỏ nhất của biểu thức
a) A= |x-2016| + |x+2017|
b) \(\frac{3}{\left(x+5\right)^2+2016}\)
a, \(\left|x-2016\right|+\left|x+2017\right|=\left|2016-x\right|+\left|x+2017\right|\)
\(\ge\left|2016-x+x+2017\right|=4033\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2016-x\right)\left(x+2017\right)\ge0\)
Bạn tự giải nốt nhé!
b. Ta có : \(\left(x+5\right)^2\ge0\) với mọi x
\(\Leftrightarrow\left(x+5\right)^2+2016\ge2016\) với mọi x
\(\Leftrightarrow\frac{1}{\left(x+5\right)^2+2016}\le\frac{1}{2016}\) với mọi x
\(\Leftrightarrow\frac{3}{\left(x+5\right)^2+2016}\le\frac{3}{2016}=\frac{1}{672}\) với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Bạn tự kết luận nha :)
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
ta có \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}\)
\(=1-\frac{1}{\left|x-2016\right|+2018}\)
để \(1-\frac{1}{\left|x-2016\right|+2018}\)nhỏ nhất thì \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất
để \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất thì \(\left|x-2016\right|+2018\)nhỏ nhất
ta lại có \(\left|x-2016\right|+2018\ge2018\)với mọi x nên để đạt giá trị nhỏ nhất thì
\(\left|x-2016\right|+2018=2018\)
\(\Leftrightarrow\left|x-2016\right|=0\Leftrightarrow x=2016\)
với x=2016 thì \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)đạt giá tri nhỏ nhất bằng \(\frac{2017}{2018}\)
chúc bạn học tốt
Giả sử x=2016
Ta có:
2016-2016=0
Như vậy (x-2016)+2017=2017
((x-2016)+2018=2018
Vậy giá trị nhỏ nhất là
2017/2018
Em không chắc đúng vì em mới lớp 5
\(B=\left|x+2016\right|+\left|2017-x\right|+\left|x-2018\right|\)
Vì :
\(\left|x+2016\right|\ge x+2016\forall x\)
\(\left|2017-x\right|\ge2017-x\forall x\)
\(\left|x-2018\right|\ge0\forall x\)
\(\Leftrightarrow B\ge x+2016+2017-x+0=4033\)
Dấu "=" xảy ra \(\Leftrightarrow2017-x=0\Leftrightarrow x=2017\)
Vậy Bmin = 4033 khi và chỉ khi x = 2017
Cho sửa :v
\(B=\left|x+2016\right|+\left|2017-x\right|+\left|x-2018\right|\)
\(B=\left|x+2016\right|+\left|x-2017\right|+\left|2018-x\right|\)
Vì \(\hept{\begin{cases}\left|x+2016\right|\ge x+2016\forall x\\\left|x-2017\right|\ge0\forall x\\\left|2018-x\right|\ge2018-x\forall x\end{cases}}\)
\(\Rightarrow B\ge x+2016+0+2018-x=4034\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2017=0\Leftrightarrow x=2017\)
Vậy Bmin = 4034 khi và chỉ khi x = 2017
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)
\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)
\(\Leftrightarrow\)\(x=2016\)
Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)
Chúc bạn học tốt ~