Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-9\ge-9\)
\(E_{min}=-9\) khi \(x=2\)
\(E=x^{^{ }2}-4x-5=x^2-2.2x+2^2-9=\left(x-2\right)^2-9\)
=>MIN(E)=-9
dấu '=' xảy ra <=>x-2=0=>x=2
vậy MIN (E)=-9 khi x=2
\(A=\dfrac{x^3-2x^2-15x}{x-5}=\dfrac{x\left(x^2-2x-15\right)}{x-5}=\dfrac{x\left(x+3\right)\left(x-5\right)}{x-5}=x\left(x+3\right)\)
\(A=x^2+3x=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
\(A_{min}=-\dfrac{9}{4}\)
Câu 1 :
\(E=4x^2+y^2-4x-2y+3\)
\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)
\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Câu 2 :
\(G=x^2+2y^2+2xy-2y\)
\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)
\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Ta có: \(E=9x^2+6x-1\)
\(=9x^2+6x+1-2\)
\(=\left(3x+1\right)^2-2\ge-2\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{3}\)
\(F=\left(3x\right)^2+2.3x.1+1-2=\left(3x+1\right)^2-2\ge-2\)
Dấu = xảy ra ⇔ \(3x+1=0\Rightarrow x=\dfrac{-1}{3}\)
Vậy min của F là -2
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)
E=\(\left(4x^4+4x^2+1\right)-5\)
=\(\left(2x^2+1\right)^2-5\)
ta thấy \(\left(2x^2+1\right)^2\)>hoặc bằng 0 với mọi x
=>\(\left(2x^2+1\right)^2-5\)>hoặc bằng -5 với mọi x
Dấu "=" xảy ra khi 2x2+1=0<=>2x2=-1(vô lí)
VẬY ........................................
\(E=4x^4+4x^2-4\)
\(E=\left(2x^2\right)^2+4x^2+1-5\)
\(E=\left(2x^2+1\right)^2-5\)
Vì \(2x^2\ge0\Rightarrow2x^2+1\ge1\)
\(\Rightarrow\left(2x^2+1\right)^2-5\ge-4\)
Dấu = xảy ra khi \(2x^2=0\Rightarrow x=0\)
Vậy Min A = -4 khi x = 0
GTNN :
B=4x2+4x+11
= (2x)2+2*x*2+22+7
=(2x+2)2+7>= 7
dấu ''='' sảy ra khi 2x+2=0
=> x = -1
vậy GTNN của biểu thức B là 7 tại x = -1
\(B=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dau "=" xay ra <=> \(x=-\frac{1}{2}\)
Vay.....
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`
Ta có: \(E=4x^2+4x-5\)
\(=4x^2+4x+1-6\)
\(=\left(2x+1\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
\(A=4x^2+4x-5=4x^2+4x+1-6=\left(2x+1\right)^2-6\)
Do \(\left(2x+1\right)^2\ge0\) \(\Rightarrow\left(2x+1\right)^2-6\ge-6\)
\(\Rightarrow Max\) A=-6\(\Leftrightarrow x=\dfrac{-1}{2}\)