Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có B = x2-x+x = x2
Mà x2 ≥ 0 với ∀ x.Dấu ''='' xảy ra <=> x=0
Vậy Min B = 0 tại x = 0
b,Ta có 4x-x2+3 = -x2+4x-4+7
= -(x2-4x+4)+7
= -(x-2)2+7
Mà (x-2)2 ≥ 0 với ∀ 0 => -(x-2)2 ≤ 0 => -(x-2)2+7 ≤ 7
Dâu ''='' xảy ra <=> -(x-2)2 = 0 <=> x-2 = 0 <=> x=2
Vậy Max c = 7 tại x = 2.
c,Ta có 2x-2x2-5 = -x2+2x-1-x2-4
= -(x-1)2-x2-4
Mà (x-1)2 ≥ 0 => -(x-1)2 ≤ 0
x2 ≥ 0 => -x2 ≤ 0
Ta có D đạt GTLN <=> -(x-1)2 = 0 hoặc -x2 = 0
-Xét -(x-1)2 = 0 <=> x = 1. Khi đó ta có D = -5
-Xét -x2 = 0 <=> x = 0. Khi đó ta có D = -5
Vậy Max D = -5 tại x = 0 hoặc x = 1
Ta có: \(E=4x^2+4x-5\)
\(=4x^2+4x+1-6\)
\(=\left(2x+1\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
Ta có : y=−13x3+(m−1)x2+(m+3)x−4y=−13x3+(m−1)x2+(m+3)x−4
Có y′=−x2+2(m−1)x+(m+3)y′=−x2+2(m−1)x+(m+3).
Để hàm số nghịch biến trên (0;3)(0;3) thì f′(x)<0∀x∈(0;3)f′(x)<0∀x∈(0;3) nghĩa là :
−x2+2(m−1)x+m+3<0⇔m<x2+2x−32x+1−x2+2(m−1)x+m+3<0⇔m<x2+2x−32x+1 với mọi x∈(0;3)x∈(0;3)
Đến đây ta chỉ việc tìm cực tiểu của hàm số f(x)=x2+2x−32x+1f(x)=x2+2x−32x+1 trên (0;3)(0;3).
Dễ dàng chứng minh f(x)f(x) đồng biến nên f(x)>f(0)=−3f(x)>f(0)=−3.
Vậy m≤−3m≤−3.
------------------------------------------
P/S:Ko chắc
Ta có :\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
<=> \(\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
<=> \(\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}\right)=\left(x-105\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
<=> x - 105 = 0 (Vì \(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\))
<=> x = 105
Vậy nghiệm phương trình là x = 105
Câu 1 :
\(E=4x^2+y^2-4x-2y+3\)
\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)
\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)
Câu 2 :
\(G=x^2+2y^2+2xy-2y\)
\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)
\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)
Dấu '=' xảy ra khi x=1/2
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
\(E=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-9\ge-9\)
\(E_{min}=-9\) khi \(x=2\)
\(E=x^{^{ }2}-4x-5=x^2-2.2x+2^2-9=\left(x-2\right)^2-9\)
=>MIN(E)=-9
dấu '=' xảy ra <=>x-2=0=>x=2
vậy MIN (E)=-9 khi x=2