Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=x^2-2x+5\)
\(=\left(x-1\right)^2+4\)
Ta thấy \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0+4\forall x\)
hay \(A\ge4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy Min A=4 \(\Leftrightarrow x=1\)
a , \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu " = " xảy ra khi x - 1 = 0 hay x = 1
Vậy GTNN là 4 khi x = 1 .
b , \(9-4x-x^2=-\left(x^2+4x-9\right)=-\left(x^2+4x+4-13\right)=-\left(x+2\right)^2+13=13-\left(x+2\right)^2\le13\)
Dấu " = " xảy ra khi x + 2 = 0 hay x = -2 .
Vậy GTLN là 13 khi x = -2 .
c , mik ko bt làm
\(A=2x-2x^2-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_A=-\frac{9}{2}\) khi và chỉ khi \(x=\frac{1}{2}\)
Để \(P\left(x\right)_{min}\Leftrightarrow2x^2-4x+2019_{min}\)
Phân tích \(P\left(x\right):\)
\(2x^2-4x+2019\)
\(\Leftrightarrow2x^2-4x+2+2017\)
\(\Leftrightarrow2\cdot\left(x-1\right)^2+2017\ge2017\)
Dấu "=" xảy ra khi và chỉ khi \(2\cdot\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy GTNN của P(x) là 2017 khi x = 1.
Ta có : \(P\left(x\right)=2x^2-4x+2019\)
\(=2x^2-4x+2+2017\)
\(=2\left(x-1\right)^2+2017\)
Vì \(\left(x-1\right)^2\ge0\)
\(\Rightarrow2\left(x-1\right)^2\ge0\)
\(\Rightarrow2\left(x-1\right)^2+2017\ge2017\)
Dấu ''='' xảy ra khi \(2\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy Min P(x) = 2017 khi x =1
Lời giải
Do \(\left(x-2y\right)^2\ge0;\left(y-2012\right)^{2012}\ge0\)
Cộng theo vế hai BĐT trên,suy ra \(P\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-2012=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\y=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4024\\y=2012\end{cases}}\)
Vậy \(P_{min}=0\Leftrightarrow\hept{\begin{cases}x=4024\\y=2012\end{cases}}\)
\(A=x^2+2y^2+2xy-4x+6y+2020\)
\(A=\left(x^2+y^2+2^2+2xy-4y-4x\right)+\left(y^2+10y+25\right)+1991\)
\(A=\left(x+y-2\right)^2+\left(y+5\right)^2+1991\ge1991\)
Vậy \(Min_A=1991\)khi \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-5\end{cases}}\hept{\begin{cases}x=7\\y=-5\end{cases}}\)
\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)
\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)
\(M=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\) với mọi x
=>GTNN của M là 1
Dấu "=" xảy ra <=> x+1=0<=>x=-1
\(P\left(x\right)=2x^2-4x+2012\\ =2x^2-4x+2+2010\\ =2\left(x^2-2x+1\right)+2010\\ =2\left(x-1\right)^2+2010\\ \left(x-1\right)^2\ge0\forall x\\ \Leftrightarrow2\left(x-1\right)^2\ge0\forall x\\ \Leftrightarrow2\left(x-1\right)^2+2010\ge2010\forall x\\ \text{Dấu }"="\text{ xảy ra khi }\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(Min_{P\left(x\right)}=2010\text{ khi }x=1\)