K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2024

\(A=\dfrac{\left|x-2022\right|+2024-1}{\left|x-2022\right|+2024}=1-\dfrac{1}{\left|x-2022\right|+2024}\)

Do \(\left|x-2022\right|\ge0;\forall x\Rightarrow\left|x-2022\right|+2024\ge2024\)

\(\Rightarrow-\dfrac{1}{\left|x-2022\right|+2024}\ge-\dfrac{1}{2024}\)

\(\Rightarrow A\ge1-\dfrac{1}{2024}=\dfrac{2023}{2024}\)

\(A_{min}=\dfrac{2023}{2024}\) khi \(x-2022=0\Rightarrow x=2022\)

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

10 tháng 8 2023

\(a=2022.\left|x^2+1\right|+2023\)

\(\Rightarrow a=2022.\left(x^2+1\right)+2023\left(\left|x^2+1\right|>0,\forall x\right)\)

mà \(\left(x^2+1\right)\ge1,\forall x\)

\(\Rightarrow a=2022.\left(x^2+1\right)+2023\ge2022.1+2023=4045\)

\(\Rightarrow GTNN\left(a\right)=4045\left(x=0\right)\)

10 tháng 8 2023

GTNN(a) = 4045 khi x = 0

9 tháng 6 2023

A = \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\)

Đặt B = \(\left|x+1\right|+\left|x-2022\right|\)

\(\left|x-2022\right|\) = \(\left|2022-x\right|\) ⇒ B = \(\left|x+1\right|+\left|2022-x\right|\)

B =\(\left|x+1\right|+\left|2022-x\right|\) ≥ \(\left|x+1+2022-x\right|\) = 2023

B(min) = 2023 ⇔ (\(x+1\))(2022-\(x\)\(\ge\) 0

Lập bảng ta có: 

\(x\)                    -1                      2022
\(x+1\)           -         0          +            |       +
\(2022-x\)             +         |           +           0       -
(\(x+1\))(\(2022-x\))             -       0           +           0       -

 

Theo bảng trên ta có: B(min) = 2023 ⇔ -1 ≤ \(x\) ≤ 2022

A = \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\) 

Vì A dương nên A(max) ⇔ B(min) ⇔ B = 2023

A(max) = \(\dfrac{1}{2023}\) ⇔ -1 ≤ \(x\) ≤ 2022

 

16 tháng 12 2022

a: |x|+2003>=2003

=>A<=2022/2003

Dấu = xảy ra khi x=0

b: |x|+1>=1

=>(|x|+1)^10>=1

=>B>=2010

Dấu = xảy ra khi x=0

29 tháng 4 2023

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

DT
17 tháng 12 2023

\(D=\dfrac{\left|x\right|+2023}{\left|x\right|+2022}=\dfrac{\left|x\right|+2022}{\left|x\right|+2022}+\dfrac{1}{\left|x\right|+2022}\\ =1+\dfrac{1}{\left|x\right|+2022}\)

Nhận thấy : \(\left|x\right|\ge0\forall x\inℝ\)

\(\Rightarrow\left|x\right|+2022\ge2022\)

\(\Rightarrow\dfrac{1}{\left|x\right|+2022}\le\dfrac{1}{2022}\)

\(\Rightarrow D=1+\dfrac{1}{\left|x\right|+2022}\le1+\dfrac{1}{2022}=\dfrac{2023}{2022}\)

Dấu = xảy ra khi : \(\left|x\right|=0\Rightarrow x=0\)

Vậy GTLN của D là : \(\dfrac{2023}{2022}\) tại x=0

25 tháng 12 2023

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

8 tháng 7 2021

Vì x2 ≥ 0 ∀ x 

=> -5x2 ≤ 0

=> -5x2 + 9 ≤ 9

Để A = -5x2 + 9 nhận giá trị lớn nhất thì -5x2 + 9 = 9 

=> A = 9

Vì ( 3x - 2 )2 ≥ 0

=> 5 - ( 3x - 2 )2 ≤ 5

Để B = 5 - ( 3x - 2 )2 nhận giá trị lớn nhất thì 5 - ( 3x - 2 )2 = 5 

=> B = 5

Để D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}\)nhận giá trị lớn nhất thì ( 2 - x )2 + 1 nhận giá trị nhỏ nhất

Mà ( 2 - x )2 + 1 ≠ 0

=> ( 2 - x )2 + 1 = 1

=> D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}=\frac{\text{2022}}{\text{1}}\)= 2022 

8 tháng 7 2021

Ta có \(-5x^2\le0\Leftrightarrow-5x^2+9\le9\)  

=> Max A = 9 

Dấu "=" xảy ra <=> x2 = 0 => x = 0

Vậy Max A = 9 <=> x = 0

b) Ta có \(-\left(3x-2\right)^2\le0\forall x\Rightarrow5-\left(3x-2\right)^2\le5\)

=> Max B = 5 

Dấu "=" xảy ra <=> 3x - 2 = 0 <=> x = 2/3

Vậy Max = 5 <=> x = 2/3

c) Ta có \(2x^2+3\ge3\forall x\Rightarrow\frac{1}{2x^2+3}\le\frac{1}{3}\)

=> Max C = 1/3 

Dấu "=" xảy  ra <=> x = 0 => x = 0

Vậy Max C = 1/3 <=> x = 0

d) Ta có \(\left(2-x\right)^2+1\ge1\forall x\Leftrightarrow\frac{2022}{\left(2-x\right)^2+1}\le2022\)

=> Max D = 2022

 Dấu "=" xảy ra <=> 2 - x = 0 => x = 2

Vậy Max D = 2022 <=> x = 2

21 tháng 5 2020

Có: \(|x-1|\ge0\)

      \(|x-2|\ge0\)

     .................

      \(|x-2019|\ge0\)

=>  \(A\ge0\)

   Vậy giá trị nhỏ nhất của A là 0

21 tháng 5 2020

Cám ơn bạn nhiều <3