K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

A=\(\frac{3x^2-8x+6}{x^2-2x+1}\)\(\Leftrightarrow3x^2-8x+6=Ax^2-2xA+A\)\(\Leftrightarrow Ax^2-3x^2-2xA+8x+A-6=0\)

\(\Leftrightarrow x^2\left(A-3\right)-x\left(2A-8\right)+\left(A-6\right)\)

Ta có \(\Delta=b^2-4ac=\left(2A-8\right)^2-4\left(A-3\right)\left(A-6\right)=4A^2-32A+64-4A^2+36A-72=4A-8\)

Để phương trình có nghiệm: 

\(\Leftrightarrow\Delta\ge0\Leftrightarrow4A-8\ge0\Leftrightarrow A\ge2\)

Dấu = xảy ra khi và chỉ khi :

\(\left(2-3\right)x^2-x\left(2.2-8\right)+2-6=0\Leftrightarrow-x^2+4x-4=0\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy MinA = 2 đạt được khi X=2

11 tháng 8 2016

bn coi lại đề

15 tháng 8 2016

sao phải coi lại

21 tháng 3 2016

Mình sẽ giải lần lượt cho

21 tháng 3 2016

xin lỗi mình chịu

14 tháng 7 2019
https://i.imgur.com/CaJ6ewb.jpg
30 tháng 7 2019

a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)

\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)

Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)

hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)

A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)

+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

30 tháng 7 2019

c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

Vậy \(x\ge1\)thì A = B

d) \(x\le\frac{1}{2}\)

21 tháng 3 2016

1) 1

2)7,5

3) 8

1 * cũng được nhe

22 tháng 3 2016

bạn lm thế nào vậy?

7 tháng 9 2017

\(2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{7}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

dau = xay ra khi va chi khi \(x=-\frac{3}{4}\)

\(x^2+2x+1=\left(x+1\right)^2\ge0\) dau = xay ra khi va chi khi \(x=-1\)

18 tháng 12 2016

a)\(A=3\cdot\left|1-2x\right|-5\)

\(\left|1-2x\right|\ge0\Rightarrow3\cdot\left|1-2x\right|\ge0\Rightarrow3\cdot\left|1-2x\right|-5\ge0-5=-5\)

\(\Rightarrow A\ge-5\)

\(\Rightarrow MIN_A=-5\Leftrightarrow\left|1-2x\right|=0\Leftrightarrow1-2x=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

b)\(B=\left(2x^2+1\right)^4-3\)

\(\left(2x^2+1\right)^4\ge1\Rightarrow\left(2x^2+1\right)^4-3\ge1-3=-2\)

\(\Rightarrow A\ge-2\)

\(\Rightarrow MIN_A=-2\Leftrightarrow\left(2x^2+1\right)^4=1\Leftrightarrow2x^2+1=1\Leftrightarrow2x^2=0\Leftrightarrow x=0\)

c)\(C=\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\)

\(\left|x-\frac{1}{2}\right|\ge0,\left(y+2\right)^2\ge0\Rightarrow\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\ge0+0+11=11\)

\(\Rightarrow A\ge11\)

\(\Rightarrow MIN_A=11\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2},\left(y+2\right)^2=0\Leftrightarrow y+2=0\Leftrightarrow y=-2\)

16 tháng 12 2017

bài nay lớp 9 thật ak

hiện tại mk lớp 7 và cô giáo giao cho mk bài này ucche

30 tháng 5 2017

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)=\frac{9}{4}\)\(\Rightarrow2\left(ab+ac+bc\right)=\frac{9}{4}-\left(a^2+b^2+c^2\right)\)

mà ta có \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+ac+bc\right)\ge0\)\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-\frac{9}{4}+\left(a^2+b^2+c^2\right)\ge0\)

\(3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\Leftrightarrow\left(a^2+b^2+c^2\right)\ge\frac{3}{4}\)có \(\left(a^2+b^2+c^2\right)\)đạt min là 3/4 khi và chỉ khi a=b=c=1/2