Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{3x^2-8x+6}{x^2-2x+1}\)\(\Leftrightarrow3x^2-8x+6=Ax^2-2xA+A\)\(\Leftrightarrow Ax^2-3x^2-2xA+8x+A-6=0\)
\(\Leftrightarrow x^2\left(A-3\right)-x\left(2A-8\right)+\left(A-6\right)\)
Ta có \(\Delta=b^2-4ac=\left(2A-8\right)^2-4\left(A-3\right)\left(A-6\right)=4A^2-32A+64-4A^2+36A-72=4A-8\)
Để phương trình có nghiệm:
\(\Leftrightarrow\Delta\ge0\Leftrightarrow4A-8\ge0\Leftrightarrow A\ge2\)
Dấu = xảy ra khi và chỉ khi :
\(\left(2-3\right)x^2-x\left(2.2-8\right)+2-6=0\Leftrightarrow-x^2+4x-4=0\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy MinA = 2 đạt được khi X=2
\(2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{7}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)
dau = xay ra khi va chi khi \(x=-\frac{3}{4}\)
\(x^2+2x+1=\left(x+1\right)^2\ge0\) dau = xay ra khi va chi khi \(x=-1\)
hình như tìm GTLN
b)
B=\(3x^2-6x+3+x+1\)
=\(3.\left(x-1\right)^2+x+1\)
.................
hc tốt
Đây là toán 9 mà?
\(A=\frac{2x+1}{x^2+2}\Leftrightarrow Ax^2-2x+\left(2A-1\right)=0\) (1)
+)A = 0 thì \(x=-\frac{1}{2}\)
+)A khác 0 thì (1) là pt bậc 2.(1) có nghiệm tức là \(\Delta'=1-A\left(2A-1\right)\ge0\)
\(\Leftrightarrow-2A^2+A+1\ge0\Leftrightarrow-\frac{1}{2}\le A\le1\)
Thay vào giải x
a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)
\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)
Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)
A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)
+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
Vậy \(x\ge1\)thì A = B
d) \(x\le\frac{1}{2}\)
Áp dụng BĐT Bunhiacopxki : \(A^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\)
\(\Leftrightarrow A^2\le25\Leftrightarrow\left|A\right|\le5\Leftrightarrow-5\le A\le5\)
Vậy minA = -5 khi \(\hept{\begin{cases}2x+3y=-5\\2x^2+3y^2=5\end{cases}\Leftrightarrow}x=y=-1\)
maxA = 5 khi \(\hept{\begin{cases}2x+3y=5\\2x^2+3y^2=5\end{cases}\Leftrightarrow}x=y=1\)