K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

a)A=2/5-x lớn nhất <=>5-x dương hỏ nhất 

                               =>5-x=1=>x=4

vậy max A xảy ra <=>x=4

b)B=19-2x/x-4=2(x-4)+11/x-4=2+11/x-4 max

                                              <=>11/x-4 max<=> x-4 min dương nhỏ nhất

                                                                          =>x-4=1=>x=5

vậy maxB xảy ra <=>x=5

(lưu ý: max là giá trị lớn nhất và min là giá trị nhỏ nhất)

10 tháng 5 2016

\(D=\frac{19-2x}{9-x}=\frac{1+18-2x}{9-x}=\frac{1+2\left(9-x\right)}{9-x}=\frac{1}{9-x}+2\)

Do đó, để D có giá trị lớn nhất => 1/(9-x) có GTLN

mà 1 là số nguyên dương nên 9-x có giá trị dương nhỏ nhất hay 9-x=1

x=9-1=8

Vậy để D có GTLN thì x=8

28 tháng 3 2016

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

28 tháng 2 2019

ta có |x+19|+|y-5|+1980 >1980

<=>|x+19|+|y-5|>0

dấu"="chỉ xảy ra <=>|x+19|=0vs|y-5|=0<=>x+19=0vsy-5=0

                                   <=>x=-19,y=5

                                   

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

19 tháng 7 2020

Bài 1.

a.Ta có: (x - 1)2  ≥ 0 với mọi x ∈ Z

=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z

Dấu "=" xảy ra khi (x - 1)2 = 0

=> x - 1 = 0

=> x = 1

Vậy GTNN của A là 12 tại x = 1.

b. Có: |x + 3| ≥ 0 với mọi x ∈ Z

=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z

Dấu "=" xảy ra khi |x + 3| = 0

=> x + 3 = 0

=> x = -3

Vậy GTNN của B là 2020 tại x = -3.

Bài 2.

Có: |3 - x| ≥ 0 với mọi x ∈ Z

=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z

Dấu "=" xảy ra khi |3 - x| = 0

=> 3 - x = 0

=> x = 3

Vậy GTLN của Q là 20 tại x = 3.

19 tháng 7 2020

1. A = ( x - 1 )2 + 12

\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)

Dấu = xảy ra <=> x - 1 = 0 => x = 1

Vậy AMin = 12 khi x = 1

B = | x + 3 | + 2020

\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)

Dấu = xảy ra <=> x + 3 = 0 => x = -3

Vậy BMin = 2020 khi x = -3 

2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )

Q = 20 - | 3 - x | 

\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)

=> \(20-\left|3-x\right|\le20\forall x\)

Dấu = xảy ra <=> 3 - x = 0 => x = 3

Vậy QMax = 20 khi x = 3 

1 tháng 5 2019

a.\(A=\left(x-1\right)^2+2008\)

Ta có: \(\left(x-1\right)^2\ge0\) nên \(A=\left(x-1\right)^2+2008\ge2008\)

Vậy Amin \(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=0+1\)

\(\Leftrightarrow x=1\)

Vậy Amin = 2008 \(\Leftrightarrow\) x = 1

1 tháng 5 2019

b. \(B=\left|x+4\right|+1996\)

Ta có: \(\left|x+4\right|\ge0\) nên \(B=\left|x+4\right|+1996\ge1996\)

Vậy Bmin\(\Leftrightarrow\) \(\left|x+4\right|=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=0-4\)

\(\Leftrightarrow x=-4\)

Vậy Bmin = 1996 \(\Leftrightarrow x=-4\)