Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{3}{x-3}\ge0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
\(\sqrt{\frac{-3}{x-3}}\)
\(\Leftrightarrow\frac{-3}{x-3}\ge0\)
\(\Leftrightarrow x-3< 0\)
\(\Rightarrow x< 3\)
Để \(\sqrt{\frac{x+3}{7-x}}\)có nghĩa thì x + 3 và 7 - x cùng dấu
\(TH1:\hept{\begin{cases}x+3\ge0\\7-x>0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x< 7\end{cases}}\Rightarrow-3\le x< 7\)(Vì x = 7 thì bt không có nghĩa)
\(TH2:\hept{\begin{cases}x+3\le0\\7-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-3\\x>7\end{cases}}\left(L\right)\)
Vậy \(-3\le x< 7\)
Căn thức xác định \(\Leftrightarrow x^2+5x+4\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\ge0\)
Do đó: (x+1) và (x+4) là 2 số cùng dấu.
TH1: \(\hept{\begin{cases}x+1\ge0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge-4\end{cases}\Leftrightarrow}x\ge-1}\)
TH2: \(\hept{\begin{cases}x+1\le0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\le-4\end{cases}\Leftrightarrow}x\le-4}\)
Vậy \(\orbr{\begin{cases}x\ge-1\\x\le-4\end{cases}}\)
Chúc bạn học tốt.
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}-2}-\dfrac{4\sqrt{x}}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
ĐKXĐ:
\(1-\sqrt{x^2-3}\ne0\)
\(\Rightarrow\sqrt{x^2-3}>1\)
\(\Rightarrow x^2-3>1\)
\(\Rightarrow x^2>4\)
=> \(x>2\) hoặc x\(< -2\)
*Ta xét biểu thức trong căn
\(\sqrt{x^2-3}=\sqrt{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}\ge0\)
\(\Leftrightarrow x+\sqrt{3}\)và \(x-\sqrt{3}\)cùng dấu.
Mà \(x-\sqrt{3}< x+\sqrt{3}\)nên \(\hept{\begin{cases}x-\sqrt{3}>0\\x+\sqrt{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\sqrt{3}\\x< -\sqrt{3}\end{cases}}\)
*Xét biểu thức dưới mẫu
\(1-\sqrt{x^2-3}\ne0\Leftrightarrow\sqrt{x^2-3}\ne1\)
\(\Leftrightarrow x^2-3\ne1\Leftrightarrow x\ne\pm2\)
ĐKXD : \(\sqrt{\frac{2}{3}x-\frac{1}{5}}\ge0\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{5}\ge0\)
\(\Leftrightarrow\frac{2}{3}x\ge\frac{1}{5}\\ \Leftrightarrow x\ge\frac{3}{10}\)
a )
\(\sqrt{\frac{3}{4}-5x}\ge0\)
\(< =>\frac{3}{4}-5x\ge0\)
\(< =>-5x\ge-\frac{3}{4}\)
\(< =>\frac{-20x}{4}\ge-\frac{3}{4}\)
\(< =>-20x\ge-3\)
\(< =>x\ge\frac{3}{20}\)
\(\sqrt{\frac{-3}{1}-2x}\ge0\)
\(< =>-3-2x\ge0\)
\(< =>-2x\ge3\)
\(< =>x\ge-\frac{3}{2}\)
dkxd \(x\ge4\)
A=\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
th1 \(\sqrt{x-4}\ge2\Leftrightarrow x\ge8\)
ta co\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
th2 \(4\le x< 8\)
ta co \(\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
ĐKXĐ X >= 4
\(y=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\sqrt{x-4}+2+l\sqrt{x-4}-2l\)
(+) \(l\sqrt{x-4}-2l=\sqrt{x-4}-2\) khi x>= 8
(+) \(l\sqrt{x-4}-2l=2-\sqrt{x-4}\) khi x<= 8
Với x >=8 => y = \(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
Với \(x<=8\Rightarrow y=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\\frac{3x-2}{x+1}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-1\\\orbr{\begin{cases}x\ge\frac{3}{2}\\x\le-1\end{cases}}\end{cases}}}\)
Khi đó: \(\sqrt{\frac{3x-2}{x+1}}=3\)
\(\Leftrightarrow\frac{3x-2}{x+1}=9\)
\(\Leftrightarrow9x+9=3x-2\)
\(\Leftrightarrow6x=-11\)
\(\Leftrightarrow x=\frac{-11}{6}\)(T/m ĐKXĐ)
ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\x\ge\frac{3}{2}hoặcx\le-1\end{cases}}\)