K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

a ) 

\(\sqrt{\frac{3}{4}-5x}\ge0\)

\(< =>\frac{3}{4}-5x\ge0\)

\(< =>-5x\ge-\frac{3}{4}\)

\(< =>\frac{-20x}{4}\ge-\frac{3}{4}\)

\(< =>-20x\ge-3\)

\(< =>x\ge\frac{3}{20}\)

\(\sqrt{\frac{-3}{1}-2x}\ge0\)

\(< =>-3-2x\ge0\)

\(< =>-2x\ge3\)

\(< =>x\ge-\frac{3}{2}\)

25 tháng 5 2018

1-2x dưới mẫu nhé

23 tháng 6 2020

Bài làm:

a) \(\sqrt{x^2-3x+2}=\sqrt{\left(x-1\right)\left(x-2\right)}\)

Ta xét 2 trường hợp sau:

Nếu: \(\hept{\begin{cases}x-1\ge0\\x-2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\ge2\end{cases}\Rightarrow}}x\ge2\)

Nếu: \(\hept{\begin{cases}x-2\le0\\x-1\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le2\\x\le1\end{cases}\Rightarrow}x\le1\)

Vậy \(\orbr{\begin{cases}x\ge2\\x\le1\end{cases}}\)

b) \(\sqrt{2x^2+4x+5}=\sqrt{\left(x+2\right)^2+x^2+1}\)

Mà \(\left(x+2\right)^2+x^2+1>0\left(\forall x\right)\)

Vậy biểu thức xác đinh với mọi x

c) \(\sqrt{x^2+4x+5}=\sqrt{\left(x+2\right)^2+1}\)

Mà \(\left(x+2\right)^2+1>0\left(\forall x\right)\)

Vậy biểu thức xác định với mọi x

Học tốt!!!!

27 tháng 5 2018

\(\sqrt{x+\frac{3}{7-x}}hay\sqrt{x+\frac{3}{7}-x}\) vậy?

28 tháng 11 2019

Để \(\sqrt{\frac{x+3}{7-x}}\)có nghĩa thì x + 3 và 7 - x cùng dấu

\(TH1:\hept{\begin{cases}x+3\ge0\\7-x>0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x< 7\end{cases}}\Rightarrow-3\le x< 7\)(Vì x = 7 thì bt không có nghĩa)

\(TH2:\hept{\begin{cases}x+3\le0\\7-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-3\\x>7\end{cases}}\left(L\right)\)

Vậy \(-3\le x< 7\)

a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì

 \(x^2-8x-9\ge0\)

\(\Leftrightarrow x^2+x-9x-9\ge0\)

\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)

\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)

\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)

\(Để\sqrt{4-9x^2}\text{có nghĩa}\)

\(\Rightarrow4-9x^2\ge0\)

\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)

\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)

3 tháng 12 2019

ĐK:3x+2>=0

  <=>3x>=-2

 <=> x>=-2/3

a: ĐKXĐ: x>=0; x<>1

\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{1}{\sqrt{x}+2}\)

c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)

d: căn x+2>=2

=>A<=1/2

Dấu = xảy ra khi x=0

a: ĐKXĐ: a>=0; a<>4

b: \(M=\dfrac{a\sqrt{a}-a\sqrt{a}+2a-a-2\sqrt{a}}{a-4}=\dfrac{a-2\sqrt{a}}{a-4}=\dfrac{\sqrt{a}}{\sqrt{a}+2}\)

c: Khi a=9 thì \(M=\dfrac{3}{3+2}=\dfrac{3}{5}\)

28 tháng 8 2018

Căn thức xác định \(\Leftrightarrow x^2+5x+4\ge0\)

                            \(\Leftrightarrow\left(x+1\right)\left(x+4\right)\ge0\)

Do đó: (x+1) và (x+4) là 2 số cùng dấu.

TH1: \(\hept{\begin{cases}x+1\ge0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge-4\end{cases}\Leftrightarrow}x\ge-1}\)

TH2: \(\hept{\begin{cases}x+1\le0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\le-4\end{cases}\Leftrightarrow}x\le-4}\)

Vậy \(\orbr{\begin{cases}x\ge-1\\x\le-4\end{cases}}\)

Chúc bạn học tốt.