K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

ĐKXĐ:

\(1-\sqrt{x^2-3}\ne0\)

\(\Rightarrow\sqrt{x^2-3}>1\)

\(\Rightarrow x^2-3>1\)

\(\Rightarrow x^2>4\)

=> \(x>2\) hoặc x\(< -2\)

25 tháng 8 2019

*Ta xét biểu thức trong căn

\(\sqrt{x^2-3}=\sqrt{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}\ge0\)

\(\Leftrightarrow x+\sqrt{3}\)và \(x-\sqrt{3}\)cùng dấu.

Mà \(x-\sqrt{3}< x+\sqrt{3}\)nên \(\hept{\begin{cases}x-\sqrt{3}>0\\x+\sqrt{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\sqrt{3}\\x< -\sqrt{3}\end{cases}}\)

*Xét biểu thức dưới mẫu

\(1-\sqrt{x^2-3}\ne0\Leftrightarrow\sqrt{x^2-3}\ne1\)

\(\Leftrightarrow x^2-3\ne1\Leftrightarrow x\ne\pm2\)

9 tháng 8 2020

Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó 

\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

b)

\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)

\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)

Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)

2 tháng 12 2019

Có đặt cái nick name mak mất dạy VC

a

Để \(\sqrt{\frac{1}{x-1}}\) xác định thì \(\frac{1}{x-1}\ge0\)

\(\Leftrightarrow x-1>0\)

\(\Leftrightarrow x>1\)

c

Để \(\sqrt{x^2+1}\) xác định thì \(x^2+1\ge0\) ( điều này luôn đúng )

Vậy \(\sqrt{x^2+1}\) xác định với mọi x

16 tháng 12 2016

\(\frac{x-2}{x^2-2x+1}\ge0\)

\(\frac{x-2}{\left(x-2\right)^2}\ge0\)

\(\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)

\(\Rightarrow x>2\)

hoc lop may roi đại lộc .

16 tháng 12 2016

Ta nhận xét thấy mẫu luôn lớn hơn hoặc bằng 0 nên ta có

ĐKXĐ là

\(\hept{\begin{cases}x-2\ge0\\x^2-2x+1\ne0\end{cases}}\Leftrightarrow x\ge2\)

19 tháng 12 2015

ĐKXĐ : \(1-x>0\Rightarrow x<1\) và \(1+x>0\Rightarrow x>-1\)

Vậy -1 < x < 1

6 tháng 8 2019

ĐKXD : \(\sqrt{\frac{2}{3}x-\frac{1}{5}}\ge0\)

\(\Leftrightarrow\frac{2}{3}x-\frac{1}{5}\ge0\)

\(\Leftrightarrow\frac{2}{3}x\ge\frac{1}{5}\\ \Leftrightarrow x\ge\frac{3}{10}\)

23 tháng 12 2015

\(x^2+6x+3\ge0\Rightarrow x^2+6x+9-6\ge0\Rightarrow\left(x+3\right)^2-6\ge0\) (luôn đúng)

nên \(x^2-1>0\Rightarrow x^2>1\) => -1 < x < 1

Vậy điều kiện : -1 < x < 1

 

2 tháng 9 2018

a,

\(A\Leftrightarrow\)\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}\right)^2+2\sqrt{x}+1}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)(1)

Để A xđ <=> \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\\\sqrt{x}-3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)

b , (1) <=> \(\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)

<=> \(\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)

<=> \(\frac{2}{x-1}\times\frac{x-1}{\sqrt{x}-3}\)

<=> \(\frac{2}{\sqrt{x}-3}\)