Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó
\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)
b)
\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)
\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)
Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)
a) A xác định \(\Leftrightarrow\hept{\begin{cases}x^2-2x\ge0\\x-\sqrt{x^2-2x}\ne0\\x+\sqrt{x^2-2x}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 0\\x\ge2\end{cases}}\)
b) \(A=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}=\frac{\left(x^2+x^2-2x+2x\sqrt{x^2-2x}\right)-\left(x^2+x^2-2x-2x\sqrt{x^2-2x}\right)}{x^2-\left(x^2-2x\right)}\)\(=\frac{4x\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)
c) \(A< 2\Leftrightarrow2\sqrt{x^2-2x}< 2\Leftrightarrow x^2-2x< 1\Leftrightarrow x^2-2x-1< 0\Leftrightarrow1-\sqrt{2}\le x\le1+\sqrt{2}\)
Kết hợp với điều kiện A xác định được : \(2\le x\le1+\sqrt{2}\)
Vậy \(A< 2\Leftrightarrow2\le x\le1+\sqrt{2}\)
a) \(\sqrt{\frac{3x-2}{x^2-2x+4}}=\sqrt{\frac{3x-2}{\left(x-1\right)^2+3}}\)
Mà \(\left(x-1\right)^2+3>0\)nên bt xác định\(\Leftrightarrow3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
b)\(\sqrt{\frac{2x-3}{2x^2+1}}\)
Vì \(2x^2+1>0\)nên bt xác định\(\Leftrightarrow2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)
a)biểu thức có nghĩa khi :
-x4 -2 > 0 <=> - x4 > 2
\(\frac{x-2}{x^2-2x+1}\ge0\)
\(\frac{x-2}{\left(x-2\right)^2}\ge0\)
\(\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)
\(\Rightarrow x>2\)
hoc lop may roi đại lộc .
Ta nhận xét thấy mẫu luôn lớn hơn hoặc bằng 0 nên ta có
ĐKXĐ là
\(\hept{\begin{cases}x-2\ge0\\x^2-2x+1\ne0\end{cases}}\Leftrightarrow x\ge2\)