Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2}{x^2-2x+1}\ge0\)
\(\frac{x-2}{\left(x-2\right)^2}\ge0\)
\(\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)
\(\Rightarrow x>2\)
hoc lop may roi đại lộc .
Ta nhận xét thấy mẫu luôn lớn hơn hoặc bằng 0 nên ta có
ĐKXĐ là
\(\hept{\begin{cases}x-2\ge0\\x^2-2x+1\ne0\end{cases}}\Leftrightarrow x\ge2\)
a) ĐKXĐ: \(x\ge0;x\ne1\)
b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)
ĐKXĐ:
\(1-\sqrt{x^2-3}\ne0\)
\(\Rightarrow\sqrt{x^2-3}>1\)
\(\Rightarrow x^2-3>1\)
\(\Rightarrow x^2>4\)
=> \(x>2\) hoặc x\(< -2\)
*Ta xét biểu thức trong căn
\(\sqrt{x^2-3}=\sqrt{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}\ge0\)
\(\Leftrightarrow x+\sqrt{3}\)và \(x-\sqrt{3}\)cùng dấu.
Mà \(x-\sqrt{3}< x+\sqrt{3}\)nên \(\hept{\begin{cases}x-\sqrt{3}>0\\x+\sqrt{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\sqrt{3}\\x< -\sqrt{3}\end{cases}}\)
*Xét biểu thức dưới mẫu
\(1-\sqrt{x^2-3}\ne0\Leftrightarrow\sqrt{x^2-3}\ne1\)
\(\Leftrightarrow x^2-3\ne1\Leftrightarrow x\ne\pm2\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
Mình làm thử, bạn xem có đúng hông nha!
\(ĐKXĐ:\hept{\begin{cases}4x+2\ge0\\x^2+4x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{1}{2}\\\left(x+2\right)^2-3\ge-3\Leftrightarrow x=-2\end{cases}\Leftrightarrow}x\ge-\frac{1}{2}}\)
Mình giải thử lun nha!
\(\sqrt{4x+2}=\sqrt{x^2+4x+1}\) (1)
Bình phương cả 2 vế của pt, ta được:
\(\left(1\right)\Leftrightarrow\left(\sqrt{4x+2}\right)^2=\left(\sqrt{x^2+4x+1}\right)^2\)
\(\Leftrightarrow4x+2=x^2+4x+1\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\left(\text{nhận }\right)\\x=-1\left(\text{loại}\right)\end{cases}}}\)
Vậy: \(S=\left\{1\right\}\)
(Nếu đúng thì tíck cho mìk vs nhé!)
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;0\right\}\end{matrix}\right.\)
Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó
\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)
b)
\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)
\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)
Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x-1}\ne0\\x-1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ge1\end{matrix}\right.\Rightarrow x>1\)